Computer Vision and Deep Learning Transforming Image Recognition and Beyond

Authors

  • Yizhi Chen
  • Sihao Wang
  • Luqi Lin
  • Zhengrong Cui
  • Yanqi Zong

DOI:

https://doi.org/10.62051/ijcsit.v2n1.06

Keywords:

Computer Vision; Deep Learning; I mage Recognition; Applications

Abstract

Computer vision is a cutting-edge information processing technology that seeks to mimic the human visual nervous system.   Its primary aim is to emulate the psychological processes of human vision to interpret and depict objective scenery.   This revolutionary field encompasses a wide range of applications, including life sciences, medical diagnosis, military operations, scientific research, and many others. At the heart of computer vision lies the theoretical core, which includes deep learning, image recognition, target detection, and target tracking These elements combine to enable computers to process, analyze, and understand images, allowing for the classification of objects based on various patterns One of the standout advantages of deep learning techniques, when compared to traditional methods, is their ability to automatically learn and adapt to the specific features required for a given problem.   This adaptive nature of deep learning networks has opened up new possibilities and paved the way for remarkable breakthroughs in the field of computer vision. This paper examines the practical application of computer vision processing technology and convolutional neural networks (CNNs) and elucidates the advancements in artificial intelligence within the field of computer vision image recognition. It does so by showcasing the tangible benefits and functionalities of these technologies.

Downloads

Download data is not yet available.

References

“Based on Intelligent Advertising Recommendation and Abnormal Advertising Monitoring System in the Field of Machine Learning”. International Journal of Computer Science and Information Technology, vol. 1, no. 1, Dec. 2023, pp. 17-23, https://doi.org/10.62051/ijcsit.v1n1.03.

Yu, Liqiang, et al. “Research on Machine Learning With Algorithms and Development”. Journal of Theory and Practice of Engineering Science, vol. 3, no. 12, Dec. 2023, pp. 7-14, doi:10.53469/jtpes.2023.03(12).02.

Huang, J., Zhao, X., Che, C., Lin, Q., & Liu, B. (2024). Enhancing Essay Scoring with Adversarial Weights Perturbation and Metric-specific AttentionPooling. arXiv preprint arXiv:2401.05433.

Tan, Kai, et al. “Integrating Advanced Computer Vision and AI Algorithms for Autonomous Driving Systems”. Journal of Theory and Practice of Engineering Science, vol. 4, no. 01, Jan. 2024, pp. 41-48, doi:10.53469/jtpes.2024.04(01).06.

Tianbo, Song, Hu Weijun, Cai Jiangfeng, Liu Weijia, Yuan Quan, and He Kun. "Bio-inspired Swarm Intelligence: a Flocking Project With Group Object Recognition." In 2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE), pp. 834-837. IEEE, 2023.DOI: 10.1109/mce.2022.3206678.

“The Application of Artificial Intelligence in Medical Diagnostics: A New Frontier”. Academic Journal of Science and Technology, vol. 8, no. 2, Dec. 2023, pp. 57-61, https://doi.org/10.54097/ajst.v8i2.14945.

Pan, Yiming, et al. “Application of Three-Dimensional Coding Network in Screening and Diagnosis of Cervical Precancerous Lesions”. Frontiers in Computing and Intelligent Systems, vol. 6, no. 3, Jan. 2024, pp. 61-64, https://doi.org/10.54097/mi3VM0yB.

Liu, B., Zhao, X., Hu, H., Lin, Q., & Huang, J. (2023). Detection of Esophageal Cancer Lesions Based on CBAM Faster R-CNN. Journal of Theory and Practice of Engineering Science, 3(12), 36–42. https://doi.org/10.53469/jtpes.2023.03(12).06.

K. Jin, Z. Z. Zhong and E. Y. Zhao, "Sustainable Digital Marketing Under Big Data: An AI Random Forest Model Approach," in IEEE Transactions on Engineering Management, vol. 71, pp. 3566-3579, 2024, doi: 10.1109/TEM.2023.3348991.

Liu, Bo, et al. "Integration and Performance Analysis of Artificial Intelligence and Computer Vision Based on Deep Learning Algorithms." arXiv preprint arXiv:2312.12872 (2023).

Jin, Keyan. "Impacts of Word of Mouth (WOM) on E-Business Online Pricing." JGIM vol.31, no.3 2023: pp.1-17. http://doi.org/10.4018/JGIM.324813.

Yu, L., Liu, B., Lin, Q., Zhao, X., & Che, C. (2024). Semantic Similarity Matching for Patent Documents Using Ensemble BERT-related Model and Novel Text Processing Method. arXiv preprint arXiv:2401.06782.

“The Application of Artificial Intelligence to The Bayesian Model Algorithm for Combining Genome Data”. Academic Journal of Science and Technology, vol. 8, no. 3, Dec. 2023, pp. 132-5, https://doi.org/10.54097/ykhccb53.

Wei, Kuo, et al. “Strategic Application of AI Intelligent Algorithm in Network Threat Detection and Defense”. Journal of Theory and Practice of Engineering Science, vol. 4, no. 01, Jan. 2024, pp. 49-57, doi:10.53469/jtpes.2024.04(01).07.

Du, Shuqian, et al. “Application of HPV-16 in Liquid-Based Thin Layer Cytology of Host Genetic Lesions Based on AI Diagnostic Technology Presentation of Liquid”. Journal of Theory and Practice of Engineering Science, vol. 3, no. 12, Dec. 2023, pp. 1-6, doi:10.53469/jtpes.2023.03(12).01.

Xin, Q., He, Y., Pan, Y., Wang, Y., & Du, S. (2023). The implementation of an AI-driven advertising push system based on a NLP algorithm. International Journal of Computer Science and Information Technology, 1(1), 30-37.0.

Pan, Yiming, et al. “Application of Three-Dimensional Coding Network in Screening and Diagnosis of Cervical Precancerous Lesions”. Frontiers in Computing and Intelligent Systems, vol. 6, no. 3, Jan. 2024, pp. 61-64, https://doi.org/10.54097/mi3VM0yB.

“Enhancing Computer Digital Signal Processing through the Utilization of RNN Sequence Algorithms”. International Journal of Computer Science and Information Technology, vol. 1, no. 1, Dec. 2023, pp. 60-68, https://doi.org/10.62051/ijcsit.v1n1.09.

“Implementation of Computer Vision Technology Based on Artificial Intelligence for Medical Image Analysis”. International Journal of Computer Science and Information Technology, vol. 1, no. 1, Dec. 2023, pp. 69-76, https://doi.org/10.62051/ijcsit.v1n1.10.

Dong, Xinqi, et al. “The Prediction Trend of Enterprise Financial Risk Based on Machine Learning ARIMA Model”. Journal of Theory and Practice of Engineering Science, vol. 4, no. 01, Jan. 2024, pp. 65-71, doi:10.53469/jtpes.2024.04(01).09.

“A Deep Learning-Based Algorithm for Crop Disease Identification Positioning Using Computer Vision”. International Journal of Computer Science and Information Technology, vol. 1, no. 1, Dec. 2023, pp. 85-92, https://doi.org/10.62051/ijcsit.v1n1.12.

Wang, Sihao, et al. “Diabetes Risk Analysis Based on Machine Learning LASSO Regression Model”. Journal of Theory and Practice of Engineering Science, vol. 4, no. 01, Jan. 2024, pp. 58-64, doi:10.53469/jtpes.2024.04(01).08.

Downloads

Published

06-03-2024 — Updated on 06-03-2024

Issue

Section

Articles

How to Cite

Chen, Y., Wang, S., Lin, L., Cui, Z., & Zong, Y. (2024). Computer Vision and Deep Learning Transforming Image Recognition and Beyond. International Journal of Computer Science and Information Technology, 2(1), 45-51. https://doi.org/10.62051/ijcsit.v2n1.06