Intelligent Security Detection and Defense in Operating Systems Based on Deep Learning
DOI:
https://doi.org/10.62051/ijcsit.v2n1.37Keywords:
Operating system; Network security; Deep learning; EnhanceAbstract
With the development of network technology, APT(advanced persistentthreat) attacks are increasing, and research on the security of enterprise assets requires effective detection of digital assets in the network space and effective management of assets through screening and combing, which is the key to real-time monitoring of the safe operation of the system. However, the accompanying malware also poses a threat to the user's property and privacy, so an effective method of detecting Android malware is necessary. In this research direction, although the feature processing capability of traditional machine learning has been improved, there are problems that feature extraction relies on expert experience and the accuracy is low. Therefore, this paper combines deep learning reinforcement technology with the operating system to detect and defend the system in advance, so as to achieve network security.
Downloads
References
K. Xu, X. Wang, Z. Hu and Z. Zhang, "3D Face Recognition Based on Twin Neural Network Combining Deep Map and Texture," 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi'an, China, 2019, pp. 1665-1668, doi: 10.1109/ICCT46805.2019.8947113.
Zhenghua Hu, Xianmei Wang, Kangming Xu, and Pu Dong. 2020. Real-time Target Tracking Based on PCANet-CSK Algorithm. In Proceedings of the 2019 3rd International Conference on Computer Science and Artificial Intelligence (CSAI '19). Association for Computing Machinery, New York, NY, USA, 343–346. https://doi.org/10.1145/3374587.3374607.
Shi, Peng, Yulin Cui, Kangming Xu, Mingmei Zhang, and Lianhong Ding. 2019. "Data Consistency Theory and Case Study for Scientific Big Data" Information 10, no. 4: 137. https://doi.org/10.3390/info10040137.
Wang, G., Gong, Y., Zhu, M., Yuan, J., & Wei, K. (2023). Unveiling the future navigating next-generation ai frontiers and innovations in application. International Journal of Computer Science and Information Technology, 1(1), 147-156.
Ji, Huan, et al. "Utilizing Machine Learning for Precise Audience Targeting in Data Science and Targeted Advertising." Academic Journal of Science and Technology 9.2 (2024): 215-220.
Qian, Wenpin, et al. "Clinical Medical Detection and Diagnosis Technology Based on the AlexNet Network Model." Academic Journal of Science and Technology 9.2 (2024): 207-211.
Wu, Jiang, et al. "Case Study of Next-Generation Artificial Intelligence in Medical Image Diagnosis Based on Cloud Computing." Journal of Theory and Practice of Engineering Science 4.02 (2024): 66-73.
Zhu, Mingwei, et al. "Enhancing Collaborative Machine Learning for Security and Privacy in Federated Learning." Journal of Theory and Practice of Engineering Science 4.02 (2024): 74-82.
Yang, Le, et al. "Research and Application of Visual Object Recognition System Based on Deep Learning and Neural Morphological Computation." International Journal of Computer Science and Information Technology 2.1 (2024): 10-17.
Chen, Jianhang, et al. "One-stage object referring with gaze estimation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
Qian, Jili, et al. "A Liver Cancer Question-Answering System Based on Next-Generation Intelligence and the Large Model Med-PaLM 2." International Journal of Computer Science and Information Technology 2.1 (2024): 28-35.
Duan, Shiheng, et al. “Prediction of Atmospheric Carbon Dioxide Radiative Transfer Model Based on Machine Learning”. Frontiers in Computing and Intelligent Systems, vol. 6, no. 3, Jan. 2024, pp. 132-6, https://doi.org/10.54097/ObMPjw5n.
Chen , Jianfeng, et al. “Implementation of an AI-Based MRD Evaluation and Prediction Model for Multiple Myeloma”. Frontiers in Computing and Intelligent Systems, vol. 6, no. 3, Jan. 2024, pp. 127-31, https://doi.org/10.54097/zJ4MnbWW.
“Machine Learning Model Training and Practice: A Study on Constructing a Novel Drug Detection System”. International Journal of Computer Science and Information Technology, vol. 1, no. 1, Dec. 2023, pp. 139-46, https://doi.org/10.62051/ijcsit.v1n1.19.
Zhang, Y., & Zhang, H. (2023). Enhancing robot path planning through a twin-reinforced chimp optimization algorithm and evolutionary programming algorithm. IEEE Access.
Shen, Zepeng, et al. "EDUCATIONAL INNOVATION IN THE DIGITAL AGE: THE ROLE AND IMPACT OF NLP TECHNOLOGY." OLD AND NEW TECHNOLOGIES OF LEARNING DEVELOPMENT IN MODERN CONDITIONS (2024): 281.
Gong, Yulu, et al. "RESEARCH ON A MULTILEVEL PRACTICAL TEACHING SYSTEM FOR THE COURSE'DIGITAL IMAGE PROCESSING." OLD AND NEW TECHNOLOGIES OF LEARNING DEVELOPMENT IN MODERN CONDITIONS (2024): 272.
Zhang, Y., Abdullah, S., Ullah, I., & Ghani, F. (2024). A new approach to neural network via double hierarchy linguistic information: Application in robot selection. Engineering Applications of Artificial Intelligence, 129, 107581.
Qian, Wenpin, et al. "NEXT-GENERATION ARTIFICIAL INTELLIGENCE INNOVATIVE APPLICATIONS OF LARGE LANGUAGE MODELS AND NEW METHODS." OLD AND NEW TECHNOLOGIES OF LEARNING DEVELOPMENT IN MODERN CONDITIONS (2024): 262.
W. Sun, W. Wan, L. Pan, J. Xu, and Q. Zeng, “The Integration of Large-Scale Language Models Into Intelligent Adjudication: Justification Rules and Implementation Pathways”, Journal of Industrial Engineering & Applied Science, vol. 2, no. 1, pp. 13–20, Feb. 2024.
Zhou, Yanlin, et al. "Utilizing AI-Enhanced Multi-Omics Integration for Predictive Modeling of Disease Susceptibility in Functional Phenotypes." Journal of Theory and Practice of Engineering Science 4.02 (2024): 45-51.
Liang, Penghao, et al. "Enhancing Security in DevOps by Integrating Artificial Intelligence and Machine Learning." Journal of Theory and Practice of Engineering Science 4.02 (2024): 31-37.
Zhang, Chenwei, et al. "SegNet Network Architecture for Deep Learning Image Segmentation and Its Integrated Applications and Prospects." Academic Journal of Science and Technology 9.2 (2024): 224-229.
Wang, Yong, et al. "Autonomous Driving System Driven by Artificial Intelligence Perception Fusion." Academic Journal of Science and Technology 9.2 (2024): 193-198.
Duan, Shiheng, et al. "THE INNOVATIVE MODEL OF ARTIFICIAL INTELLIGENCE COMPUTER EDUCATION UNDER THE BACKGROUND OF EDUCATIONAL INNOVATION." The 2nd International scientific and practical conference “Innovations in education: prospects and challenges of today”(January 16-19, 2024) Sofia, Bulgaria. International Science Group. 2024. 389 p.. 2024.
Zhang, Quan, et al. "Application of the AlphaFold2 Protein Prediction Algorithm Based on Artificial Intelligence." Journal of Theory and Practice of Engineering Science 4.02 (2024): 58-65.
Bao, Qiaozhi, et al. "Exploring ICU Mortality Risk Prediction and Interpretability Analysis Using Machine Learning." (2024).
Zhou, Y., Osman, A., Willms, M., Kunz, A., Philipp, S., Blatt, J., & Eul, S. (2023). Semantic Wireframe Detection.
Zhang, Y., Gono, R., & Jasiński, M. (2023). An Improvement in Dynamic Behavior of Single Phase PM Brushless DC Motor Using Deep Neural Network and Mixture of Experts. IEEE Access.
Zhu, Mengran, et al. "THE APPLICATION OF DEEP LEARNING IN FINANCIAL PAYMENT SECURITY AND THE CHALLENGE OF GENERATING ADVERSARIAL NETWORK MODELS." The 8th International scientific and practical conference “Priority areas of research in the scientific activity of teachers”(February 27–March 01, 2024) Zagreb, Croatia. International Science Group. 2024. 298 p.. 2024.
K. Xu, X. Wang, Z. Hu and Z. Zhang, "3D Face Recognition Based on Twin Neural Network Combining Deep Map and Texture," 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi'an, China, 2019, pp. 1665-1668, doi: 10.1109/ICCT46805.2019.8947113.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Hongbo Wang, Jian Wu, Chenwei Zhang, Wenran Lu, Chunhe Ni

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.