Joint Optimization of Resource Allocation and Trajectory in UAV-assisted Wireless Semantic communication System
DOI:
https://doi.org/10.62051/ijcsit.v2n3.06Keywords:
Semantic communication; Unmanned aerial vehicle; Resource allocation; Trajectory optimizationAbstract
In this paper, we investigate the resource allocation design of an unmanned aerial vehicle (UAV)-enabled semantic communication system, in which UAVs are assigned to transmit semantic information to multiple user nodes. Our goal is to maximize the semantic information sum rate of the communication system by jointly optimizing the subcarrier allocation strategy and the trajectory of the UAVs, taking into account the minimum required semantic data rate for each user node, the minimum semantic similarity that can be received, the maximum cruise speed of the UAVs, and the initial/final position of the UAVs. The design is formulated as a generally tricky mixed-integer nonconvex optimization problem. Subsequently, a computationally efficient iterative algorithm is proposed to obtain a locally optimal solution, and further proofs demonstrate that the proposed algorithm is guaranteed to converge to a solution that satisfies at least the KKT condition of the original optimization problem.
Downloads
References
Liang RJ, Fan JC. Energy-Efficient mmWave IoT Communications with multi-hop IRS-Assisted Systems[J]. IEEE Internet of Things Journal, 2023, Vol. 10 (No. 21), p. 19344-19355. DOI: https://doi.org/10.1109/JIOT.2023.3304715
M. S. Abouamer, P. Mitran. Joint uplink-downlink resource allocation for multiuser irs-assisted systems[J]. IEEE Transactions on Wireless Communications, 2023, Vol. 21 (No. 12), p. 10918-10933. DOI: https://doi.org/10.1109/TWC.2022.3188240
M. Matin, S. K. Goudos, S. Wan, et al. Artificial intelligence (AI) and machine learning (ML) for beyond 5g/6g communications[J]. EURASIP Journal on Wireless Communications and Networking, 2023, Vol. 1, p. 22. DOI: https://doi.org/10.1186/s13638-023-02212-z
W. Saad, M. Bennis, M. Chen. A vision of 6g wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, Vol. 34 (No. 3), p. 134-142. DOI: https://doi.org/10.1109/MNET.001.1900287
C. Munasinghe, F. M. Amin, D. Scaramuzza, et al. Covered, collaborative robot environment dataset for 3d semantic segmentation[J]. arXiv preprint arXiv:2302.12656, 2022. DOI: https://doi.org/10.1109/ETFA52439.2022.9921525
A. Cavagna, N. Li, A. Iosifidis, et al. Semantic communication enabling robust edge intelligence for time critical iot applications[J]. arXiv preprint arXiv:2211.13787, 2022. DOI: https://doi.org/10.1109/ICCWorkshops57953.2023.10283786
J. Yu, A. Alhilal, P. Hui, et al. 6g mobile-edge empowered metaverse: Requirements, technologies, challenges and research directions[J]. arXiv preprint arXiv:2211.04854, 2022.
C. E. Shannon. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, Vol. 27 (No. 03), p. 379-423. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
W. Yang, H. Du, Z. Q. Liew, et al. Semantic communications for future internet: Fundamentals, applications, and challenges[J]. IEEE Communication Survey Tutorials, 2023, Vol. 25 (No. 01), p. 213-250. DOI: https://doi.org/10.1109/COMST.2022.3223224
H. Xie and Z. Qin. A lite distributed semantic communication system for internet of things[J]. IEEE Journal of Selected Areas in Communications, 2021, Vol. 39 (No. 01), p. 142-153, 2021. DOI: https://doi.org/10.1109/JSAC.2020.3036968
K. Lu, R. Li, X. Chen, et al. Reinforcement learning-powered semantic communication via semantic similarity, CoRR, vol. abs/2108.12121, 2021.
Q. Zhou, R. Li, Z. Zhao, et al. Semantic communication with adaptive universal transformer[ J]. IEEE Wireless Communication Letters, 2022, Vol. 11 (No. 3), p. 453-457. DOI: https://doi.org/10.1109/LWC.2021.3132067
E. C. Strinati and S. Barbarossa. 6g networks: Beyond shannon towards semantic and goal-oriented communications[J]. Computer Networks, 2021, Vol. 190, p. 107930. DOI: https://doi.org/10.1016/j.comnet.2021.107930
L. Xia, Y. Sun, X. Li, et al. Wireless resource management in intelligent semantic communication networks[C]. IEEE Conference on Computer Communications Workshops, INFOCOM 2022 Workshops, New York, NY, USA, May 2-5, 2022, p. 1-6. DOI: https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9797984
N. Farsad, M. Rao, A. Goldsmith. Deep learning for joint source-channel coding of text[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2018, Calgary, AB, Canada, April 15-20, p. 2326-2330. DOI: https://doi.org/10.1109/ICASSP.2018.8461983
H. Xie, Z. Qin, G. Y. Li, et al. Deep learning enabled semantic communication systems[J]. IEEE Transactions Signal Process, 2021, Vol. 69, p. 2663–2675. DOI: https://doi.org/10.1109/TSP.2021.3071210
X. Kang, B. Song, J. Guo, et al. Task oriented image transmission for scene classification in unmanned aerial systems[J]. IEEE Transactions Communication, Vol. 70 (No. 8), p. 5181-5192. DOI: https://doi.org/10.1109/TCOMM.2022.3182325
L. Yan, Z. Qin, R. Zhang, et al. Resource allocation for text semantic communications[J]. IEEE Wireless Communication. Letters, 2022, Vol. 11 (No. 07), p. 1394-1398. DOI: https://doi.org/10.1109/LWC.2022.3170849
K. Meng, Q. Wu, S. Ma, et al. UAV trajectory and beamforming optimization for integrated periodic sensing and communication[J]. IEEE Wireless Communication Letters, 2022, Vol. 11 (No. 06), p. 1211-1215. DOI: https://doi.org/10.1109/LWC.2022.3161338
S. Li, N. Zhang, H. Chen, et al. Joint subcarrier allocation, modulation mode selection, and trajectory design in a UAV-based OFDMA network[J]. IEEE Communication Letters, 2022, Vol. 26 (No. 09), p. 111-2115. DOI: https://doi.org/10.1109/LCOMM.2022.3182016
Y. Liu, B. Duo, Q. Wu, et al. Full-dimensional rate enhancement for uav-enabled communications via intelligent omni-surface[J] IEEE Communication Letters, 2022, Vol. 11 (No. 09), p. 1955-1959. DOI: https://doi.org/10.1109/LWC.2022.3189359
Y. Zeng, R. Zhang, and T. J. Lim. Throughput maximization for uav-enabled mobile relaying systems[J]. IEEE Transactions Communications, 2016, Vol. 64 (No. 12), p. 4983-4996. DOI: https://doi.org/10.1109/TCOMM.2016.2611512
S. Zeng, H. Zhang, B. Di, et al. Trajectory optimization and resource allocation for OFDMA UAV relay networks[J]. IEEE Transactions Wireless Communications, 2021, Vol. 20 (No. 10), p. 6634–6647. DOI: https://doi.org/10.1109/TWC.2021.3075594
J. Kang, H. Du, Z. Li, et al. Personalized saliency in task-oriented semantic communications: Image transmission and performance analysis[J]. IEEE Journal of Selected Areas in Communications, Vol. 41 (No. 1), p. 186-201. DOI: https://doi.org/10.1109/JSAC.2022.3221990
L. Xia, Y. Sun, D. Niyato, et al. Wireless semantic communication: A networking perspective[J]. arXiv preprint arXiv:2212.14142.
C. Liu, C. Guo, Y. Yang, et al. Bandwidth and power allocation for task-oriented semantic communication[J]. arXiv preprint arXiv:2201.10795 2022.
Y. Wang, M. Chen, T. Luo, et al. Performance optimization for semantic communications: An attention-based reinforcement learning approach[J]. IEEE Journal of Selected Areas in Communications, 2022, Vol. 40 (No. 9), p. 2598-2613. DOI: https://doi.org/10.1109/JSAC.2022.3191112
C. Liu, C. Guo, Y. Yang, et al. Adaptable semantic compression and resource allocation for task-oriented communications[J]. arXiv preprint arXiv: 2204.08910.
Z. Q. Liew, Y. Cheng, W. Y. B. Lim, et al. Economics of semantic communication system in wireless powered internet of things[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2022, Virtual and Singapore, 23-27 May 2022, p. 8637-8641. DOI: https://doi.org/10.1109/ICASSP43922.2022.9746463
L. Yan, Z. Qin, R. Zhang, et al. QoE-based semantic-aware resource allocation for multi-task networks[J]. arXiv preprint arXiv:2305.06543.
X. Mu, Y. Liu, L. Guo, et al. Heterogeneous semantic and bit communications: A semi-noma scheme[J]. IEEE Journal of Selected Areas in Communications, 2023, Vol. 40 (No. 1), p. 155-169. DOI: https://doi.org/10.1109/JSAC.2022.3222000
S. H. Low and D. E. Lapsley. Optimization flow controli: basic algorithm and convergence[J]. IEEE/ACM Transactions Networks, 1999, Vol. 7 (No. 6), p. 861-874. DOI: https://doi.org/10.1109/90.811451
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Hanxiao Sun, Ping Xie

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.