The Application of RNA Sequencing in Understanding the Molecular Mechanisms and Therapeutic Potential in Amyotrophic Lateral Sclerosis

Authors

  • Yiyi Liu

DOI:

https://doi.org/10.62051/qdj8dy86

Keywords:

Amyotrophic lateral sclerosis; RNA sequencing; Gene expression; Personalized medicine.

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons, leading to muscle weakness and paralysis. While significant advances have been made in understanding the pathophysiology of ALS, there is still no curative treatment, and the underlying molecular mechanisms remain incompletely understood. RNA sequencing (RNA-seq) has emerged as a powerful tool to analyze the transcriptome, providing critical insights into gene expression changes, alternative splicing events, and RNA metabolism. This review highlights the application of RNA-seq in ALS research, including its use in identifying ALS-related gene mutations and differential gene expressions. Key findings include the role of C9orf72, SOD1, FUS, TARDBP, and UBQLN2 mutations in disease progression, as well as the identification of potential biomarkers in cerebrospinal fluid and peripheral blood samples. Additionally, novel RNA-seq technologies, such as single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics, are explored for their ability to capture the heterogeneity of cellular populations and unravel the complex molecular mechanisms underlying ALS. Despite the promise of RNA-seq, several technical, analytical, and ethical challenges must be addressed to fully realize its potential in ALS research. Future directions include integrating RNA-seq data with other multi-omics approaches, advancing personalized medicine, and applying emerging sequencing technologies. Overall, RNA-seq continues to play a pivotal role in uncovering the molecular mechanisms of ALS and holds promise for the development of targeted therapies.

Downloads

Download data is not yet available.

References

[1] Hardiman, O., Al-Chalabi, A., Chio, A., Corr, E. M., Logroscino, G., Robberecht, W., Shaw, P. J., Simmons, Z., & Van Den Berg, L. H. (2017). Amyotrophic lateral sclerosis. Nature Reviews Disease Primers, 3 (1). https: //doi.org/10.1038/nrdp.2017. 71.

[2] Ralli, M., Lambiase, A., Artico, M., De Vincentiis, M., & Greco, A. (2019). Amyotrophic Lateral Sclerosis: Autoimmune Pathogenic Mechanisms, Clinical Features, and Therapeutic Perspectives. PubMed, 21 (7), 438 – 443. https://pubmed.ncbi.nlm.nih.gov/31507117.

[3] Nash, Y., & Sitty, M. (2021). Non-Motor Symptoms of Amyotrophic Lateral Sclerosis: A Multi-Faceted Disorder. Journal of Neuromuscular Diseases, 8 (4), 699 – 713. https: //doi.org/10.3233/jnd - 210632.

[4] Mathis, S., Couratier, P., Julian, A., Corcia, P., & Masson, G. L. (2017). Current view and perspectives in amyotrophic lateral sclerosis. Neural Regeneration Research, 12(2), 181. https: //doi.org/10.4103/1673 - 5374.200794.

[5] Richter, F. (2021). A broad introduction to RNA-Seq. Wiki Journal of Science, 4 (1), 4. https://doi.org/10.15347/wjs/2021.004.

[6] Courtney, S. M., Da Silveira, W. A., Hazard, E. S., & Hardiman, G. (2019). Molecular Profiling of RNA Tumors Using High-Throughput RNA Sequencing: Overview of Library Preparation Methods. Methods in Molecular Biology, 169 – 184. https: //doi.org/10.1007/978 - 1 - 4939 - 9004 - 7_12.

[7] Garofalo, M., Pandini, C., Bordoni, M., Pansarasa, O., Rey, F., Costa, A., Minafra, B., Diamanti, L., Zucca, S., Carelli, S., Cereda, C., & Gagliardi, S. (2020). Alzheimer’s, Parkinson’s Disease and Amyotrophic Lateral Sclerosis Gene Expression Patterns Divergence Reveals Different Grade of RNA Metabolism Involvement. International Journal of Molecular Sciences, 21 (24), 9500. https: //doi.org/10.3390/ijms21249500.

[8] Patel, R., Brophy, C., Hickling, M., Neve, J., & Furger, A. (2019). Alternative cleavage and polyadenylation of genes associated with protein turnover and mitochondrial function are deregulated in Parkinson’s, Alzheimer’s and ALS disease. BMC Medical Genomics, 12 (1). https: //doi.org/10.1186/s12920 - 019 - 0509 - 4.

[9] Ruffo, P., Strafella, C., Cascella, R., Caputo, V., Conforti, F. L., Andò, S., & Giardina, E. (2021b). Deregulation of ncRNA in neurodegenerative disease: Focus on circRNA, lncRNA and miRNA in Amyotrophic Lateral Sclerosis. Frontiers in Genetics, 12. https: //doi.org/10.3389/fgene.2021.784996.

[10] Zhu, Q., Jiang, J., Gendron, T. F., McAlonis-Downes, M., Jiang, L., Taylor, A., Garcia, S. D., Dastidar, S. G., Rodriguez, M. J., King, P., Zhang, Y., La Spada, A. R., Xu, H., Petrucelli, L., Ravits, J., Da Cruz, S., Lagier-Tourenne, C., & Cleveland, D. W. (2020). Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72. Nature Neuroscience, 23 (5), 615 – 624. https: //doi.org/10.1038/s41593 - 020 - 0619 - 5.

[11] Rubino, V., La Rosa, G., Pipicelli, L., Carriero, F., Damiano, S., Santillo, M., Terrazzano, G., Ruggiero, G., & Mondola, P. (2023). Insights on the Multifaceted Roles of Wild-Type and Mutated Superoxide Dismutase 1 in Amyotrophic Lateral Sclerosis Pathogenesis. Antioxidants, 12 (9), 1747. https: //doi.org/10.3390/antiox12091747.

[12] Peggion, C., Scalcon, V., Massimino, M. L., Nies, K., Lopreiato, R., Rigobello, M. P., & Bertoli, A. (2022). SOD1 in ALS: Taking Stock in Pathogenic Mechanisms and the Role of Glial and Muscle Cells. Antioxidants, 11 (4), 614. https://doi.org/10.3390/antiox11040614.

[13] Tejido, C., Pakravan, D., & Van Den Bosch, L. (2021). Potential Therapeutic Role of HDAC Inhibitors in FUS-ALS. Frontiers in Molecular Neuroscience, 14. https: //doi.org/10.3389/fnmol.2021.686995.

[14] Lombardi, M., Corrado, L., Piola, B., Comi, C., Cantello, R., D’Alfonso, S., Mazzini, L., & De Marchi, F. (2023). Variability in Clinical Phenotype in TARDBP Mutations: Amyotrophic Lateral Sclerosis Case Description and Literature Review. Genes, 14(11), 2039. https: //doi.org/10.3390/genes14112039.

[15] Ebstein, S. Y., Yagudayeva, I., & Shneider, N. A. (2019). Mutant TDP-43 Causes Early-Stage Dose-Dependent Motor Neuron Degeneration in a TARDBP Knockin Mouse Model of ALS. Cell Reports, 26 (2), 364 - 373.e4. https: //doi.org/10.1016/j.celrep.2018.12.045.

[16] Renaud, L., Picher-Martel, V., Codron, P., & Julien, J. (2019). Key role of UBQLN2 in pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathologica Communications, 7 (1). https: //doi.org/10.1186/s40478 - 019 - 0758 - 7.

[17] Swindell, W. R. (2024). Meta-analysis of differential gene expression in lower motor neurons isolated by laser capture microdissection from post-mortem ALS spinal cords. Frontiers in Genetics, 15. https: //doi.org/10.3389/fgene.2024.1385114.

[18] Gascón, E., Zaragoza, P., Calvo, A. C., & Osta, R. (2024). Sporadic Amyotrophic Lateral Sclerosis Skeletal Muscle Transcriptome Analysis: A Comprehensive Examination of Differentially Expressed Genes. Biomolecules, 14(3), 377. https: //doi.org/10.3390/biom14030377.

[19] Dash, B. P., Freischmidt, A., Weishaupt, J. H., & Hermann, A. (2022). Downstream Effects of Mutations in SOD1 and TARDBP Converge on Gene Expression Impairment in Patient-Derived Motor Neurons. International Journal of Molecular Sciences, 23 (17), 9652. https: //doi.org/10.3390/ijms23179652.

[20] Zucca, S., Gagliardi, S., Pandini, C., Diamanti, L., Bordoni, M., Sproviero, D., Arigoni, M., Olivero, M., Pansarasa, O., Ceroni, M., Calogero, R., & Cereda, C. (2019). RNA-Seq profiling in peripheral blood mononuclear cells of amyotrophic lateral sclerosis patients and controls. Scientific Data, 6 (1). https: //doi.org/10.1038/sdata.2019.6.

[21] Wang, J. C., Ramaswami, G., & Geschwind, D. H. (2021). Gene co-expression network analysis in human spinal cord highlights mechanisms underlying amyotrophic lateral sclerosis susceptibility. Scientific Reports, 11 (1). https: //doi.org/10.1038/s41598 - 021 - 85061 - 4.

[22] Nakaya, T. (2022). A specific gene-splicing alteration in the SNRNP70 gene as a hallmark of an ALS subtype. Gene, 818, 146203. https://doi.org/10.1016/j.gene.2022.146203.

[23] Fröhlich, A., Pfaff, A. L., Bubb, V. J., Quinn, J. P., & Koks, S. (2023). Transcriptomic profiling of cerebrospinal fluid identifies ALS pathway enrichment and RNA biomarkers in MND individuals. Experimental Biology and Medicine. https: //doi.org/10.1177/15353702231209427.

[24] Liu, W., Venugopal, S., Majid, S., Ahn, I. S., Diamante, G., Hong, J., Yang, X., & Chandler, S. H. (2020). Single-cell RNA-seq analysis of the brainstem of mutant SOD1 mice reveals perturbed cell types and pathways of amyotrophic lateral sclerosis. Neurobiology of Disease, 141, 104877. https: //doi.org/10.1016/j.nbd.2020.104877.

[25] Ho, R., Workman, M. J., Mathkar, P., Wu, K., Kim, K. J., O’Rourke, J. G., Kellogg, M., Montel, V., Banuelos, M. G., Arogundade, O. A., Diaz-Garcia, S., Oheb, D., Huang, S., Khrebtukova, I., Watson, L., Ravits, J., Taylor, K., Baloh, R. H., & Svendsen, C. N. (2021). Cross-Comparison of Human iPSC Motor Neuron Models of Familial and Sporadic ALS Reveals Early and Convergent Transcriptomic Disease Signatures. Cell Systems, 12 (2), 159 - 175.e9. https: //doi.org/10.1016/j.cels.2020.10.010.

[26] Namboori, S. C., Thomas, P., Ames, R., Hawkins, S., Garrett, L. O., Willis, C. R. G., Rosa, A., Stanton, L. W., & Bhinge, A. (2019). Single cell transcriptomics identifies master regulators of neurodegeneration in SOD1 ALS motor neurons. bioRxiv (Cold Spring Harbor Laboratory). https: //doi.org/10.1101/593129.

[27] Grima, N., Liu, S., Southwood, D., Henden, L., Smith, A., Lee, A., Rowe, D. B., D’Silva, S., Blair, I. P., & Williams, K. L. (2023). RNA sequencing of peripheral blood in amyotrophic lateral sclerosis reveals distinct molecular subtypes: Considerations for biomarker discovery. Neuropathology and Applied Neurobiology, 49 (6). https: //doi.org/10.1111/nan.12943.

[28] Wang, X., Hu, Z., Yu, T., Wang, Y., Wang, R., Wei, Y., Shu, J., Ma, J., & Li, Y. (2021). Contrastive Cycle Adversarial Autoencoders for Single-cell Multi-omics Alignment and Integration. bioRxiv (Cold Spring Harbor Laboratory). https: //doi.org/10.1101/2021.12.12.472268.

[29] Guo, J., You, L., Zhou, Y., Hu, J., Li, J., Yang, W., Tang, X., Sun, Y., Gu, Y., Dong, Y., Chen, X., Sato, C., Zinman, L., Rogaeva, E., Wang, J., Chen, Y., & Zhang, M. (2024). Spatial enrichment and genomic analyses reveal the link of NOMO1 with amyotrophic lateral sclerosis. Brain, 147 (8), 2826 – 2841. https: //doi.org/10.1093/brain/awae123

[30] Morello, G., Salomone, S., D’Agata, V., Conforti, F. L., & Cavallaro, S. (2020). From Multi-Omics Approaches to Precision Medicine in Amyotrophic Lateral Sclerosis. Frontiers in Neuroscience, 14. https: //doi.org/10.3389/fnins.2020.577755.

Downloads

Published

24-12-2024

How to Cite

Liu, Y. (2024). The Application of RNA Sequencing in Understanding the Molecular Mechanisms and Therapeutic Potential in Amyotrophic Lateral Sclerosis. Transactions on Materials, Biotechnology and Life Sciences, 7, 507-515. https://doi.org/10.62051/qdj8dy86