Application of Neuroinformatics in Alzheimer’s Disease Research

Authors

  • Juncheng Xie

DOI:

https://doi.org/10.62051/x2r7tm73

Keywords:

Neuroinformatics; Alzheimer’s disease; Data analysis; Imaging technology.

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the gradual decline in cognitive function, and its complex pathological mechanisms remain incompletely understood. As an interdisciplinary field that integrates multimodal data, neuroinformatics has played a crucial role in Alzheimer’s disease research in recent years. This review systematically explores the application of neuroinformatics in Alzheimer’s disease research, covering key databases and resources (e.g., ADNI and GAAIN), imaging technologies (e.g., MRI, fMRI, EEG, PET), and data analysis algorithms (e.g., support vector machines, convolutional neural networks). Neuroinformatics techniques have provided new pathways for early diagnosis, risk prediction, and personalized treatment of Alzheimer’s disease by integrating imaging, genomic, behavioral, and clinical data to reveal changes in brain function and structure in AD patients. In the future, with the strengthening of big data platforms and international collaborations, neuroinformatics will further promote the development of precision medicine in Alzheimer’s disease and provide stronger support for new treatment strategies.

Downloads

Download data is not yet available.

References

[1] McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Kawas, C. H., Klunk, W. E., Koroshetz, W. J., Manly, J. J., Mayeux, R., ... (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7 (3), 263 – 269.

[2] Scheltens, P., Thal, D. R., Rüb, U., Orantes, M., & Braak, H. (2021). Alzheimer’s disease. Lancet, 397 (10293), 1577 – 1590.

[3] Alzheimer’s Association. (2024). Alzheimer's disease facts and figures. Alzheimer’s & Dementia, 20 (5), 3708 – 3821.

[4] Koch, C., & Segev, I. (2000). Methods in neuronal modeling: From ion channels to networks. MIT Press.

[5] Glover, G. H. (2011). Overview of functional magnetic resonance imaging. Neurosurgical Focus, 27 (5), E4.

[6] Suppiah, S., Didier, M. A., & Vinjamuri, S. (2019). The who, when, why, and how of PET amyloid imaging in management of Alzheimer’s disease: Review of literature and interesting images. Diagnostics (Basel), 9 (2), 65.

[7] Hodes, R. J., & Buckholtz, N. (2016). Accelerating Medicines Partnership: Alzheimer’s disease (AMP-AD) knowledge portal aids Alzheimer’s drug discovery through open data sharing. Expert Opinion on Therapeutic Targets, 20 (4), 389 – 391.

[8] Van Dyck, C. H., Swanson, C. J., Aisen, P., et al. (2022). Lecanemab in early Alzheimer’s disease. The New England Journal of Medicine, 388, 9 – 21.

[9] Cullen, N., Janelidze, S., Palmqvist, S., et al. (2022). Association of CSF Abeta38 levels with risk of Alzheimer disease-related decline. Neurology, 98, e958 – e967.

[10] Neu, S. C., Crawford, K. L., & Toga, A. W. (2016). Sharing data in the global Alzheimer's Association interactive network. NeuroImage, 124 (Pt B), 1168 – 1174.

[11] Amari, S.-I., Beltrame, F., Bjaalie, J. G., Dalkara, T., De Schutter, E., Egan, G. F., Goddard, N. H., Gonzalez, C., Grillner, S., Herz, A., Hoffmann, K. P., Jaaskelainen, I., Koslow, S. H., Lee, S. Y., Matthiessen, L., Miller, P. L., Da Silva, F. M., Novak, M., Ravindranath, V., Ritz, R., Ruotsalainen, U., Sebestra, V., Subramaniam, S., Tang, Y., Toga, A. W., Usui, S., Van Pelt, J., Verschure, P., Willshaw, D., & Wrobel, A. (2002). Neuroinformatics: The integration of shared databases and tools towards integrative neuroscience. Journal of Integrative Neuroscience, 1, 117 – 128.

[12] Toga, A. W. (2002). Neuroimage databases: The good, the bad and the ugly. Nature Reviews Neuroscience, 3, 302 – 309.

[13] Rathore, S., Habes, M., Iftikhar, M. A., Shacklett, A., & Davatzikos, C. (2017). A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. NeuroImage, 155, 530 – 548.

[14] Shin, H.-C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., ... (2016). Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Transactions on Medical Imaging, 35 (5), 1285 – 1298.

[15] Whitwell, J. L., Dickson, D. W., Murray, M. E., Weigand, S. D., Tosakulwong, N., Senjem, M. L., ... (2012). Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: A case-control study. Lancet Neurology, 11 (10), 868 – 877.

[16] Casanova, R., Whitlow, C. T., Wagner, B., Williamson, J., Shumaker, S. A., Maldjian, J. A., & Espeland, M. A. (2011). High dimensional classification of structural MRI Alzheimer's disease data based on large scale regularization. Frontiers in Neuroinformatics, 5, 22.

[17] Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100, 253 – 258.

[18] Cerebral white matter integrity and cognitive aging: Contributions from diffusion tensor imaging. (2009). Neuropsychology Review, 19, 415 – 435.

[19] Bickford, R. G., Fleming, N., & Billinger, T. (1971). Compression of EEG data. Transactions of the American Neurological Association, 96, 118 – 122.

[20] Levy, W. J. (1984). Intraoperative EEG patterns: Implications for EEG monitoring. Anesthesiology, 60, 430 – 434.

[21] Tinker, J. H., Sharbrough, F. W., & Michenfelder, J. D. (1977). Anterior shift of the dominant EEG rhythm during anesthesia in the Java monkey: Correlation with anesthetic potency. Anesthesiology, 46, 252 – 259.

[22] Koelewijn, L., Bompas, A., Tales, A., Brookes, M. J., Muthu Kumaraswamy, S. D., Bayer, A., ... (2017). Alzheimer’s disease disrupts alpha and beta-band resting-state oscillatory network connectivity. Clinical Neurophysiology, 128 (11), 2347 – 2357.

[23] Colclough, G. L., Woolrich, M. W., Tewarie, P. K., Brookes, M. J., Quinn, A. J., & Smith, S. M. (2016). How reliable are MEG resting-state connectivity metrics? NeuroImage, 138, 284 – 293.

[24] Gass, A., Dey, S., & Mateen, M. (2015). Machine learning algorithms for disease classification using multi-omics data. PLOS ONE, 10 (7), e0133803.

[25] Yao, J., & Xu, Y. (2019). A comprehensive review of deep learning in medical imaging. International Journal of Medical Informatics, 130, 103964.

[26] Zhang, D., & Shen, D. (2012). Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLOS ONE, 7 (3), e33182.

[27] Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10 (3), 186 – 198.

[28] Jack, C. R., Bennett, D. A., Blennow, K., ... (2018). NIA-AA research framework: Toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia, 14 (4), 535 – 562.

[29] Karch, C. M., Cruchaga, C., & Goate, A. M. (2014). Alzheimer’s disease genetics: From the bench to the clinic. Neurobiology of Disease, 72, 1 – 11.

[30] Sperling, R. A., Aisen, P. S., Beckett, L. A., ... (2014). Toward defining the preclinical stages of Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia, 7 (3), 280 – 292.

Downloads

Published

24-12-2024

How to Cite

Xie, J. (2024). Application of Neuroinformatics in Alzheimer’s Disease Research. Transactions on Materials, Biotechnology and Life Sciences, 7, 479-485. https://doi.org/10.62051/x2r7tm73