Methodological exploration of using gene editing technology to study gene function and disease mechanism
DOI:
https://doi.org/10.62051/xtck5y05Keywords:
disease mechanism; gene editing technology; gene function; CRISPR-Cas9.Abstract
This paper discusses the application of gene editing technology, especially CRISPR-Cas9 system, in the study of gene function and disease mechanism. By modifying the genome sequence at a fixed point, gene editing technology uses specific nucleases to induce double strand breaks, trigger DNA repair mechanism, and realize accurate gene modification. This paper introduces the working principle of CRISPR-Cas9 and its application in establishing gene knock-out and knock-in models, and emphasizes the importance of this technology in revealing gene function and molecular mechanism of diseases. However, gene editing technology also faces challenges such as off-target effect and technical accuracy, and involves ethical issues. Therefore, the article puts forward that we should strengthen ethical review, improve laws and regulations, and enhance public awareness. In a word, gene editing technology provides a powerful tool for life science and medical research, and shows a broad application prospect.
Downloads
References
[1] Li, C. , Brant, E. , Budak, H. , & Zhang, B. (2021). Crispr/cas: a nobel prize award-winning precise genome editing technology for gene therapy and crop improvement. Journal of Zhejiang University-SCIENCE B, 22(4), 253-284.
[2] Cao, J. X. , Wang, Y. L. , & Wang, Z. X. (2020). Advances in precise regulation of crispr/cas9 gene editing technology. Hereditas (Beijing), 42(12), 1168-1177.
[3] Horgan, R. W. (2023). Cure rare disease: an initiative to enable n of 1 gene editing. Human gene therapy, 34(19/20), 980-981.
[4] Hwarari, D. , Radani, Y. , Ke, Y. , Chen, J. , & Yang, L. (2024). Crispr/cas genome editing in plants: mechanisms, applications, and overcoming bottlenecks. Functional & Integrative Genomics, 24(2), 1-18.
[5] Shujun, Z. , Shuangyin, L. , & Chao, T. P. H. (2023). Crispr/cas-based gene editing in therapeutic strategies for beta-thalassemia. Human Genetics, 142(12), 1677-1703.
[6] Zhou, B. , Feng, Z. , Xu, J. , Xie, J. , & Wei, P. (2023). Organoids: approaches and utility in cancer research. Chinese Medical Journal, 136(15), 1783-1793.
[7] Philippidis, A. (2023). First prime editing clinical trial expected in 2024. Human gene therapy, 34(21/22), 1077-1080.
[8] Tilson, S. , Morell, C. , Lenaerts, A. , Park, S. , Hu, Z. , & Jenkins, B. , et al. (2021). Modeling pnpla3-associated nafld using human-induced pluripotent stem cells. Hepatology (Baltimore, Md.), 74(6), 2998-3017.
[9] Rautela, I. , Uniyal, P. , Thapliyal, P. , Chauhan, N. , & Sharma, M. D. (2021). An extensive review to facilitate understanding of crispr technology as a gene editing possibility for enhanced therapeutic applications. Gene, 785(5819), 145615.
[10] Chemello, F. , Bassel-Duby, R. , & Olson, E. N. (2020). Correction of muscular dystrophies by crispr gene editing. Journal of Clinical Investigation, 130(6), 2766-2776.
[11] Malech, H. L. (2021). Treatment by crispr-cas9 gene editing-a proof of principle. New England Journal of Medicine, 384(3), 286-287.
[12] Schrauben, M. , Dempster, E. , & Lunnon, K. (2020). Applying gene-editing technology to elucidate the functional consequence of genetic and epigenetic variation in alzheimer's disease. Brain pathology (Zurich, Switzerland), 30(5), 992-1004.
[13] Zittersteijn, H. A. , Gonalves, M. A. F. V. , & Hoeben, R. C. (2021). A primer to gene therapy: progress, prospects, and problems. Journal of inherited metabolic disease, 44(1), 54-71.
[14] Diana Raquel.Rodríguez-Rodríguez, Ramiro.Ramírez-Solís, Garza-Elizondo, M. A. , María De Lourdes.Garza-Rodríguez, & Barrera-Saldaa, H. A. (2019). Genome editing: a perspective on the application of crispr/cas9 to study human diseases (review). International journal of molecular medicine, 43(4), 1559-1574.
[15] Khouzam, J. P. S. , & Tivakaran, V. S. (2020). Crispr-cas9 applications in cardiovascular disease. Current Problems in Cardiology, 46(3), 100652.
[16] Deng, J. , Guo, M. , Li, G. , & Xiao, J. (2020). Gene therapy for cardiovascular diseases in china: basic research. Gene Therapy, 27(7-8), 1-10.
[17] Lebek, S. , Chemello, F. , Caravia, X. M. , Tan, W. , Li, H. , & Chen, K. , et al. (2023). Ablation of camkiiδ oxidation by crispr-cas9 base editing as a therapy for cardiac disease. Science (New York, N.Y.), 379(6628), 179-185.
[18] [18] Yan, B. , Mi, Y. , Cui, Q. , Tong, Z. , Janefrancis, A. I. , & Gao, S. (2020). Rnai drugs: next generation drugs?. Chinese Science Bulletin, 65(7), 540-546.
[19] Welsh, J. (2024). Germline gene-editing creates enhanced livestock-technical and especially ethical issues challenge its use in humans. Engineering, 33(2), 3-5.
[20] Bolsoni, J. , Liu, D. , & Mohabatpour, FatemehEbner, RonjaSadhnani, GauravTafech, BelalLeung, JerryShanta, SelinaAn, KevinMorin, TessaChen, YihangArguello, AlfonsoChoate, KeithJan, EricRoss, Colin J. D.Brambilla, DavideWitzigmann, DominikKulkarni, JayeshCullis, Pieter R.Hedtrich, Sarah. (2023). Lipid nanoparticle-mediated hit-and-run approaches yield efficient and safe in situ gene editing in human skin. ACS nano, 17(21), 22046-22059.
[21] Mertz, & Leslie. (2018). A crispr approach for a common inherited disease: researchers at duke university hope gene editing can eliminate mutations that lead to duchenne muscular dystrophy. IEEE Pulse, 9(2), 12-14.
[22] Kudriavskii, V. V. , Goncharov, A. O. , Eremeev, A. V. , Ruchko, E. S. , Veselovsky, V. A. , & Klimina, K. M. , et al. (2024). Rna editing by adar adenosine deaminases in the cell models of cag repeat expansion diseases: significant effect of differentiation from stem cells into brain organoids in the absence of substantial influence of cag repeats on the level of editing. Biochemistry (Moscow), 89(8), 1474-1489.
[23] Group, C. E. P. (2023). Engineering a new virus to deliver gene-editing tools. Chemical Engineering Progress, 119(7), 4-5.
Downloads
Published
Conference Proceedings Volume
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.