Recent Development of Cancer Vaccines
DOI:
https://doi.org/10.62051/ng83k289Keywords:
cancer vaccine, virus-like particles, peptide vaccine, DNA and mRNA vaccine.Abstract
Immunotherapy, a truly innovative method in the field of cancer treatment, has attracted a great deal of attention because of its potential to bring about a revolution in the outcomes of cancer therapies. Even though there are many different ways being studied to make immunotherapy even more effective, fully realizing its potential, especially when it comes to cancer vaccines, is still a difficult goal to achieve. This review goes into detail about the different types of cancer vaccines, explaining the basic biological processes behind them and how they work with the immune system to fight cancer. We divide cancer vaccines into three main groups: virus-like particle (VLP) vaccines, peptide vaccines, and DNA/mRNA vaccines. Furthermore, this review also covers how these vaccines are being used in a wide range of infectious diseases and cancer types, emphasizing their versatility and the potential positive effects they can have on patients. Additionally, important topics related to the future of cancer vaccination are discussed, such as new ways to store vaccines to keep them effective, ways to reduce safety concerns, and the creation of personalized vaccines that are tailored to each patient's specific needs and cancer characteristics. By facing these challenges head-on and embracing the latest technologies, we hope to fully unlock the power of cancer vaccines, pushing the boundaries of cancer immunotherapy even further.
Downloads
References
[1] A. Lopes, G.Vandermeulen, V. Préat, Cancer DNA vaccines: current preclinical and clinical developments and future perspectives, Journal of experimental & clinical cancer research: CR, 38(2019) 146.
[2] T. Fan, M. Zhang, J. Yang, Z. Zhu, W. Cao, C. Dong, Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal transduction and targeted therapy, 8(2023) 450.
[3] F. Ruzzi, M. S. Semprini, L. Scalambra, A. Palladini, S. Angelicola, C. Cappello, O. M. Pittino, P. Nanni, P. L. Lollini, Virus-like Particle (VLP) Vaccines for Cancer Immunotherapy, International journal of molecular sciences, 24(2023) 12963.
[4] V. Rolih, J. Caldeira, E. Bolli, A. Salameh, L. Conti, G. Barutello, F. Riccardo, J. Magri, A. Lamolinara, K. Parra, P. Valenzuela, G. Francia, M. Iezzi, F. Pericle, F. Cavallo, Development of a VLP-Based Vaccine Displaying an xCT Extracellular Domain for the Treatment of Metastatic Breast Cancer, Cancers, 12(2020) 1492.
[5] P. W. Krug, L. Wang, W. Shi, W. P. Kong, D. L. Moss, E. S. Yang, B. E. Fisher, K. M. Morabito, J. R. Mascola, M. Kanekiyo, B. S. Graham, T. J. Ruckwardt, T. J, EV-D68 virus-like particle vaccines elicit cross-clade neutralizing antibodies that inhibit infection and block dissemination, Science Advances, 9(2023) eadg6076.
[6] R. J. Malonis, J. R. Lai, O. Vergnolle, Peptide-Based Vaccines: Current Progress and Future Challenges, Chemical Reviews, 120(2020) 3210–3229.
[7] M. Gigoux, M. O. Holmström, R. Zappasodi, J. J. Park, S. Pourpe, C. C. Bozkus, L. M. B., Mangarin, D. Redmond, S. Verma, S. Schad, M. M. George, D. Venkatesh, A. Ghosh, D. Hoyos, Z. Molvi, B. Kamaz, A. E. Marneth, W. Duke, M. J., Leventhal, M. Jan, T. Merghoub, Calreticulin mutant myeloproliferative neoplasms induce MHC-I skewing, which can be overcome by an optimized peptide cancer vaccine, Science Translational Medicine, 14(2022) eaba4380.
[8] Y. He, C. Hong, S. J., Fletcher, A. G. Berger, X. Sun, M. Yang, S. Huang, A. M. Belcher, D. J. Irvine, J. Li, P. T. Hammond, Peptide-Based Cancer Vaccine Delivery via the STINGΔTM-cGAMP Complex, Advanced Healthcare materials, 11(2022) e2200905.
[9] S. Pagliari, B. Dema, A. Sanchez-Martinez, G. Montalvo Zurbia-Flores, C. S. Rollier, DNA Vaccines: History, Molecular Mechanisms and Future Perspectives, Journal of Molecular Biology, 435(2023) 168297.
[10] S. Xu, K. Yang, R. Li, L. Zhang, mRNA Vaccine Era-Mechanisms, Drug Platform and Clinical Prospection, International Journal of Molecular sciences, 21(2020) 6582.
[11] S. H. Kiaie, N. Majidi Zolbanin, A. Ahmadi, R. Bagherifar, H. Valizadeh, F. Kashanchi, R. Jafari, Recent advances in mRNA-LNP therapeutics: immunological and pharmacological aspects, Journal of Nanobiotechnology, 20(2022) 276.
[12] S. Wang, KW. Chan, D. Wei, et al, Human CD4-binding site antibody elicited by polyvalent DNA prime-protein boost vaccine neutralizes cross-clade tier-2-HIV strains, Nature Communications, 15(2024) 4301.
[13] C. Furey, G. Scher, N. Ye, L. Kercher, J. DeBeauchamp, J. C. Crumpton, T. Jeevan, C. Patton, J. Franks, A. Rubrum, M. G. Alameh, S. H. Y. Fan, A. T. Phan, C. A. Hunter, R. J. Webby, D. Weissman, S. E. Hensley, Development of a nucleoside-modified mRNA vaccine against clade 2.3.4.4b H5 highly pathogenic avian influenza virus, Nature Communications, 15(2024) 4350.
Downloads
Published
Conference Proceedings Volume
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.