Polymerase Theta-mediated DNA End-Joining Repair in the Maintenance of Genome Stability

Authors

  • Xiangyu Yan

DOI:

https://doi.org/10.62051/rg3zk642

Keywords:

DNA double-strand break; Polymerase theta-meditated end-joining; BRCA-mutated breast cancer; DNA polymerase theta; DNA polymerase delta.

Abstract

The DNA double-strand break (DSB) always occurs within genome. The pathways that repair the DSB are essential in keeping cell viability. This review will focus on the recent understanding of TMEJ, especially two key protein factors involved in the TMEJ repair pathway2, DNA polymerase theta (Polθ) and DNA polymerase delta (Polδ), and discuss the potential mechanism of choosing repair pathways when there is a DNA Double Strand Break. We dissect TMEJ's unique mechanism of action, including recognition of DNA ends, microhomology search, end pairing, and DNA synthesis, by focusing on the enzyme Polθ as the central player to understand the repair pathway choice. We also discuss how BRCA-mutated cancer uses the TMEJ repair pathway to facilitate breast cancer cells' growth3. This review aims to provide a comprehensive overview of TMEJ's cellular functions, regulatory mechanisms, and pivotal role in BRCA-mutated breast cancer.

Downloads

Download data is not yet available.

References

[1] Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017 Jun;58(5):235-263.

[2] Kamp JA, van Schendel R, Dilweg IW, Tijsterman M. BRCA1-associated structural variations are a consequence of polymerase theta-mediated end-joining. Nat Commun. 2020 Jul 17;11(1):3615.

[3] Chen Y, Wu J. Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell. 2024 Jan 18;187(2):294-311.e21.

[4] Stroik S, Carvajal-Garcia J. Stepwise requirements for polymerases δ and θ in theta-mediated end joining. Nature. 2023 Nov;623(7988):836-841.

[5] Newman JA, Cooper CDO, Aitkenhead H, Gileadi O. Structure of the Helicase Domain of DNA Polymerase Theta Reveals a Possible Role in the Microhomology-Mediated End-Joining Pathway. Structure. 2015 Dec 1;23(12):2319-2330.

[6] Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019 Nov;20(11):698-714.

[7] Boulton SJ, Jackson SP. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 1996 Sep 16;15(18):5093-103.

[8] Stroik S, Carvajal-Garcia J, Gupta D, Edwards A, Luthman A, Wyatt DW, Dannenberg RL, Feng W, Kunkel TA, Gupta GP, Hedglin M, Wood R, Doublié S, Rothenberg E, Ramsden DA. Stepwise requirements for polymerases δ and θ in theta-mediated end joining. Nature. 2023 Nov;623(7988):836-841.

[9] Layer JV, Debaize L, Van Scoyk A, House NC, Brown AJ, Liu Y, Stevenson KE, Hemann M, Roberts SA, Price BD, Weinstock DM, Day TA. Polymerase δ promotes chromosomal rearrangements and imprecise double-strand break repair. Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27566-27577.

[10] Yoon JH, McArthur MJ, Park J, Basu D, Wakamiya M, Prakash L, Prakash S. Error-Prone Replication through UV Lesions by DNA Polymerase θ Protects against Skin Cancers. Cell. 2019 Mar 7;176(6):1295-1309.e15.

[11] Deshpande RA, Williams GJ, Limbo O, Williams RS, Kuhnlein J, Lee JH, Classen S, Guenther G, Russell P, Tainer JA, Paull TT. ATP-driven Rad50 conformations regulate DNA tethering, end resection, and ATM checkpoint signaling. EMBO J. 2014 Mar 3;33(5):482-500.

[12] Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H, Iliakis G. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 2006;34(21):6170-82.

[13] Pomerantz RT, Kurth I, Goodman MF, O'Donnell ME. Preferential D-loop extension by a translesion DNA polymerase underlies error-prone recombination. Nat Struct Mol Biol. 2013 Jun;20(6):748-55.

[14] Lee-Theilen M, Matthews AJ, Kelly D, Zheng S, Chaudhuri J. CtIP promotes microhomology-mediated alternative end joining during class-switch recombination. Nat Struct Mol Biol. 2011 Jan;18(1):75-9.

[15] Yu W, Lescale C, Babin L, Bedora-Faure M, Lenden-Hasse H, Baron L, Demangel C, Yelamos J, Brunet E, Deriano L. Repair of G1 induced DNA double-strand breaks in S-G2/M by alternative NHEJ. Nat Commun. 2020 Oct 16;11(1):5239.

[16] Hu Z, Zhu D, Wang W, Li W, Jia W, Zeng X, Ding W, Yu L, Wang X, Wang L, Shen H, Zhang C, Liu H, Liu X, Zhao Y, Fang X, Li S, Chen W, Tang T, Fu A, Wang Z, Chen G, Gao Q, Li S, Xi L, Wang C, Liao S, Ma X, Wu P, Li K, Wang S, Zhou J, Wang J, Xu X, Wang H, Ma D. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat Genet. 2015 Feb;47(2):158-63.

[17] Liu Q, Palomero L, Moore J, Guix I, Espín R, Aytés A, Mao JH, Paulovich AG, Whiteaker JR, Ivey RG, Iliakis G, Luo D, Chalmers AJ, Murnane J, Pujana MA, Barcellos-Hoff MH. Loss of TGFβ signaling increases alternative end-joining DNA repair that sensitizes to genotoxic therapies across cancer types. Sci Transl Med. 2021 Feb 10;13(580):eabc4465.

[18] Dale A Ramsden, Juan Carvajal-Garcia, Gaaorav P Gupta, 2022, Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining, Nat Rev Mol Cell Biol. 2022 Feb;23(2):130.

[19] Hwang T, Reh S, Dunbayev Y, Zhong Y, Takata Y, Shen J, McBride KM, Murnane JP, Bhak J, Lee S, Wood RD, Takata KI. Defining the mutation signatures of DNA polymerase θ in cancer genomes. NAR Cancer. 2020 Sep;2(3):zcaa017.

[20] Ramsden DA, Carvajal-Garcia J, Gupta GP. Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining. Nat Rev Mol Cell Biol. 2022 Feb;23(2):125-140.

[21] Lemee, F. et al. DNA polymerase up-regulation is associated with poor survival in breast cancer, perturbs DNA replication, and promotes genetic instability.

[22] Turajlic S, Litchfield K, Xu H, Rosenthal R, McGranahan N, Reading JL, Wong YNS, Rowan A, Kanu N, Al Bakir M, Chambers T, Salgado R, Savas P, Loi S, Birkbak NJ, Sansregret L, Gore M, Larkin J, Quezada SA, Swanton C. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 2017 Aug;18(8):1009-1021.

[23] Carvajal-Garcia J, Cho JE, Carvajal-Garcia P, Feng W, Wood RD, Sekelsky J, Gupta GP, Roberts SA, Ramsden DA. Mechanistic basis for microhomology identification and genome scarring by polymerase theta. Proc Natl Acad Sci U S A. 2020 Apr 14;117(15):8476-8485.

[24] Tobalina L, Armenia J, Irving E, O'Connor MJ, Forment JV. A meta-analysis of reversion mutations in BRCA genes identifies signatures of DNA end-joining repair mechanisms driving therapy resistance. Ann Oncol. 2021 Jan;32(1):103-112.

[25] Dale A Ramsden, Juan Carvajal-Garcia, Gaaorav P Gupta, 2022, Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining, Nat Rev Mol Cell Biol. 2022 Feb;23(2):130.

[26] Dale A Ramsden, Juan Carvajal-Garcia, Gaaorav P Gupta, 2022, Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining, Nat Rev Mol Cell Biol. 2022 Feb;23(2):132.

[27] Stroik S, Carvajal-Garcia J, Gupta D, Edwards A, Luthman A, Wyatt DW, Dannenberg RL, Feng W, Kunkel TA, Gupta GP, Hedglin M, Wood R, Doublié S, Rothenberg E, Ramsden DA. Stepwise requirements for polymerases δ and θ in theta-mediated end joining. Nature. 2023 Nov;623(7988):836-841.

Downloads

Published

24-12-2024

How to Cite

Yan, X. (2024). Polymerase Theta-mediated DNA End-Joining Repair in the Maintenance of Genome Stability. Transactions on Materials, Biotechnology and Life Sciences, 7, 33-39. https://doi.org/10.62051/rg3zk642