Rhythms and Microbiomes: The Impact of Circadian Rhythms on Gut Microbiota Via The Vagus Nerve
DOI:
https://doi.org/10.62051/0b39ha46Keywords:
Circadian rhythms; gut microbiota; vagus nerve.Abstract
The gut microbiota, which is as the "second largest gene" of human, is the microbial community within the gastrointestinal tract, The circadian rhythm is a 24-hour internal clock in nearly all organisms, associated with a wide range of physiological and psychological activities. It is found that there is a complex interaction and balance relationship between gut microbiota and circadian rhythm. The circadian disruption caused by unhealthy lifestyles is becoming increasingly prevalent in modern society, influencing the composition and diversity of the gut microbiota via the gut-brain axis. The vagus nerve, a pathway in the parasympathetic nervous system, is an important information regulation pathway for the crosstalk between the gut and the brain. This study investigated the impact of circadian rhythms on gut microbiota via the vagus nerve and set 3 specific aims. Firstly, the rhythmicity of the gut microbiota will be tested in normal and vagotomized mice, examining the vagus nerve in maintaining the impact of circadian rhythms on the rhythmicity of gut microbiota. Furthermore, the fecal samples from vagotomized mice will be transplanted into normal germ-free mice and vagotomized germ-free mice, thus testing the role of the vagus nerve in initiating the microbial rhythmicity regulated by the circadian cycle. Last but not least, mice will be divided into five groups of different light/dark cycles, each containing normal and vagotomized mice, measuring the specific changes in the composition and diversity of the gut microbiota caused by the circadian disturbances, and the role of gut microbiota in mediating these alterations.
Downloads
References
[1] Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med [Internet]. 2018;24(4):392–400. Available from: http://dx.doi.org/10.1038/nm.4517 DOI: https://doi.org/10.1038/nm.4517
[2] Pang X, Chen L, Xu G. New awareness of the interplay between the gut Microbiota and circadian rhythms. Pol J Microbiol [Internet]. 2023;72(4):355–63. Available from: http://dx.doi.org/10.33073/pjm-2023-046 DOI: https://doi.org/10.33073/pjm-2023-046
[3] van Son J, Koekkoek LL, La Fleur SE, Serlie MJ, Nieuwdorp M. The role of the gut Microbiota in the gut-brain axis in obesity: Mechanisms and future implications. Int J Mol Sci [Internet]. 2021;22(6):2993. Available from: http://dx.doi.org/10.3390/ijms22062993 DOI: https://doi.org/10.3390/ijms22062993
[4] O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep [Internet]. 2006;7(7):688–93. Available from: http://dx.doi.org/10.1038/sj.embor.7400731 DOI: https://doi.org/10.1038/sj.embor.7400731
[5] Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affects central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology [Internet]. 2011;141(2):599–609, 609.e1-3. Available from: http://dx.doi.org/10.1053/j.gastro.2011.04.052 DOI: https://doi.org/10.1053/j.gastro.2011.04.052
[6] Festi D, Schiumerini R, Eusebi LH, Marasco G, Taddia M, Colecchia A. Gut microbiota and metabolic syndrome. World J Gastroenterol [Internet]. 2014;20(43):16079–94. Available from: http://dx.doi.org/10.3748/wjg.v20.i43.16079 DOI: https://doi.org/10.3748/wjg.v20.i43.16079
[7] Bostanciklioğlu M. The role of gut microbiota in pathogenesis of Alzheimer’s disease. J Appl Microbiol [Internet]. 2019;127(4):954–67. Available from: http://dx.doi.org/10.1111/jam.14264 DOI: https://doi.org/10.1111/jam.14264
[8] Sen P, Molinero-Perez A, O’Riordan KJ, McCafferty CP, O’Halloran KD, Cryan JF. Microbiota and sleep: awakening the gut feeling. Trends Mol Med [Internet]. 2021;27(10):935–45. Available from: http://dx.doi.org/10.1016/j.molmed.2021.07.004 DOI: https://doi.org/10.1016/j.molmed.2021.07.004
[9] Teichman EM, O’Riordan KJ, Gahan CGM, Dinan TG, Cryan JF. When rhythms meet the blues: Circadian interactions with the Microbiota-gut-brain axis. Cell Metab [Internet]. 2020;31(3):448–71. Available from: http://dx.doi.org/10.1016/j.cmet.2020.02.008 DOI: https://doi.org/10.1016/j.cmet.2020.02.008
[10] Tian Y, Yang W, Chen G, Men C, Gu Y, Song X, et al. An important link between the gut microbiota and the circadian rhythm: imply for treatments of circadian rhythm sleep disorder. Food Sci Biotechnol [Internet]. 2022;31(2):155–64. Available from: http://dx.doi.org/10.1007/s10068-021-01015-6 DOI: https://doi.org/10.1007/s10068-021-01015-6
[11] Stranges S, Tigbe W, Gómez-Olivé FX, Thorogood M, Kandala N-B. Sleep problems: an emerging global epidemic? Findings from the INDEPTH WHO-SAGE study among more than 40,000 older adults from 8 countries across Africa and Asia. Sleep [Internet]. 2012;35(8):1173–81. Available from: http://dx.doi.org/10.5665/sleep.2012 DOI: https://doi.org/10.5665/sleep.2012
[12] Margolis KG, Cryan JF, Mayer EA. The Microbiota-gut-brain axis: From motility to mood. Gastroenterology [Internet]. 2021;160(5):1486–501. Available from: http://dx.doi.org/10.1053/j.gastro.2020.10.066 DOI: https://doi.org/10.1053/j.gastro.2020.10.066
[13] Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the Microbiota-gut-brain axis. Front Neurosci [Internet]. 2018; 12:49. Available from: http://dx.doi.org/10.3389/fnins.2018.00049 DOI: https://doi.org/10.3389/fnins.2018.00049
[14] Pearson JA, Wong FS, Wen L. Crosstalk between circadian rhythms and the microbiota. Immunology [Internet]. 2020;161(4):278–90. Available from: http://dx.doi.org/10.1111/imm.13278 DOI: https://doi.org/10.1111/imm.13278
[15] Goodrich JK, Di Rienzi SC, Poole AC, Koren O, Walters WA, Caporaso JG, et al. Conducting a microbiome study. Cell [Internet]. 2014;158(2):250–62. Available from: http://dx.doi.org/10.1016/j.cell.2014.06.037 DOI: https://doi.org/10.1016/j.cell.2014.06.037
[16] Liang X, Bushman FD, FitzGerald GA. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc Natl Acad Sci U S A [Internet]. 2015;112(33):10479–84. Available from: http://dx.doi.org/10.1073/pnas.1501305112 DOI: https://doi.org/10.1073/pnas.1501305112
[17] Bishehsari F, Voigt RM, Keshavarzian A. Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer. Nat Rev Endocrinol [Internet]. 2020;16(12):731–9. Available from: http://dx.doi.org/10.1038/s41574-020-00427-4 DOI: https://doi.org/10.1038/s41574-020-00427-4
[18] Cui M, Xiao H, Luo D, Zhang X, Zhao S, Zheng Q, et al. Circadian rhythm shapes the gut Microbiota affecting host radiosensitivity. Int J Mol Sci [Internet]. 2016;17(11):1786. Available from: http://dx.doi.org/10.3390/ijms17111786 DOI: https://doi.org/10.3390/ijms17111786
[19] Wang Y, Du W, Hu X, Yu X, Guo C, Jin X, et al. Targeting the blood-brain barrier to delay aging-accompanied neurological diseases by modulating gut microbiota, circadian rhythms, and their interplays. Acta Pharm Sin B [Internet]. 2023;13(12):4667–87. Available from: http://dx.doi.org/10.1016/j.apsb.2023.08.009 DOI: https://doi.org/10.1016/j.apsb.2023.08.009
[20] Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev [Internet]. 2020;53(101340):101340. Available from: http://dx.doi.org/10.1016/j.smrv.2020.101340 DOI: https://doi.org/10.1016/j.smrv.2020.101340
[21] Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ [Internet]. 2019;7(e7502): e7502. Available from: http://dx.doi.org/10.7717/peerj.7502 DOI: https://doi.org/10.7717/peerj.7502
[22] Vitaterna MH, Shimomura K, Jiang P. Genetics of circadian rhythms. Neurol Clin [Internet]. 2019;37(3):487–504. Available from: http://dx.doi.org/10.1016/j.ncl.2019.05.002 DOI: https://doi.org/10.1016/j.ncl.2019.05.002
[23] Hu L, Li G, Shu Y, Hou X, Yang L, Jin Y. Circadian dysregulation induces alterations of visceral sensitivity and the gut microbiota in Light/Dark phase shift mice. Front Microbiol [Internet]. 2022; 13:935919. Available from: http://dx.doi.org/10.3389/fmicb.2022.935919 DOI: https://doi.org/10.3389/fmicb.2022.935919
[24] Zhen Y, Wang Y, He F, Chen Y, Hu L, Ge L, et al. Homeostatic crosstalk among gut microbiome, hypothalamic and hepatic circadian clock oscillations, immunity and metabolism in response to different light-dark cycles: A multiomics study. J Pineal Res [Internet]. 2023;75(2): e12892. Available from: http://dx.doi.org/10.1111/jpi.12892 DOI: https://doi.org/10.1111/jpi.12892
[25] Zhang Y, Li Y, Yuan Y, Wang J, Zhang S, Zhu R, et al. Reducing light exposure enhances the circadian rhythm of the biological clock through interactions with the gut microbiota. Sci Total Environ [Internet]. 2023;858(Pt 3):160041. Available from: http://dx.doi.org/10.1016/j.scitotenv.2022.160041 DOI: https://doi.org/10.1016/j.scitotenv.2022.160041
Downloads
Published
Conference Proceedings Volume
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.