Study on resistance of MdMYB gene family in apple
DOI:
https://doi.org/10.62051/6jf33z44Keywords:
apple; MdMYB; stress; signal pathway.Abstract
The growth and development of apples are susceptible to environmental stress. The MdMYB gene family is one of the largest gene families in apples. It is widely involved in various resistance signaling pathways in apples and can interact with a variety of genes. Through anthocyanin synthesis, lignin synthesis, epidermal wax synthesis, Na + / H + pump regulation, hormone interaction, etc., the resistance of plants to abiotic and biotic stresses is improved. The MdMYB gene is regulated by multiple factors. It is regulated by epigenetic factors such as methylation and miRNA before transcription. At the transcriptional level, it is regulated by transcription factors such as MdHY5, MdWRKY11 and MdWRKY41. After translation, it is regulated by ubiquitin ligase, which is involved in MdSIZ, MdMEIL and other proteins. This paper reviews the physiological responses and signaling pathways of MdMYB-mediated apple stress resistance and the gene function regulation mechanism of MdMYB, in order to provide new ideas for the study of apple stress resistance.
Downloads
References
Zhang Qiangqiang. Study on the Evolution and Advantage Evaluation of Apple Production Layout in China[Z].in Chinese
Liu Xiaoli. Analysis on the nutritional value and health care function of Qingyang applespdf[Z].in Chinese
GAO H N, JIANG H, CUI J Y, et al. Review: The effects of hormones and environmental factors on anthocyanin biosynthesis in apple[J/OL]. Plant Science, 2021, 312: 111024. DOI:10.1016/j.plantsci.2021.111024.
LI Y, LI P, ZHANG L, et al. Genome-wide analysis of the apple family 1 glycosyltransferases identified a flavonoid-modifying UGT, MdUGT83L3, which is targeted by MdMYB88 and contributes to stress adaptation[J/OL]. Plant Science, 2022, 321: 111314. DOI:10.1016/j.plantsci.2022.111314.
YU L, LIU W, GUO Z, et al. Interaction between MdMYB63 and MdERF106 enhances salt tolerance in apple by mediating Na+/H+ transport[J/OL]. Plant Physiology and Biochemistry, 2020, 155: 464-471. DOI:10.1016/j.plaphy.2020.08.017.
MpSnRK2.10 confers salt stress tolerance in apple via the ABA signaling pathway[J/OL]. Scientia Horticulturae, 2022, 298: 110998. DOI:10.1016/j.scienta.2022.110998.
Physiological mechanisms of resistance to cold stress associated with 10 elite apple rootstocks[J/OL]. Journal of Integrative Agriculture, 2018, 17(4): 857-866. DOI:10.1016/S2095-3119(17)61760-X.
Liu Chang.Fruit Quality and Aroma Components of Main Apple Cultivars in Cold Region[Z].in Chinese
BALAN B, CARUSO T, MARTINELLI F. Gaining Insight into Exclusive and Common Transcriptomic Features Linked with Biotic Stress Responses in Malus[J/OL]. Frontiers in Plant Science, 2017, 8[2023-04-23]. https://ersp.sdau.edu.cn/s/org/frontiersin/www/G.https/articles/10.3389/fpls.2017.01569/full?;x-chain-id=8csbv6r36l8g. DOI:10.3389/fpls.2017.01569.
ROY S. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome[J/OL]. Plant Signaling & Behavior, 2016, 11(1): e1117723. DOI:10.1080/15592324.2015.1117723.
LI J, HAN G, SUN C, et al. Research advances of MYB transcription factors in plant stress resistance and breeding[J/OL]. Plant Signaling & Behavior, 2019, 14(8): 1613131. DOI:10.1080/15592324.2019.1613131.
ABE H, URAO T, ITO T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) Function as Transcriptional Activators in Abscisic Acid Signaling[J]. The Plant Cell, 2003, 15(1): 63-78.
NEILL S O, GOULD K S. Anthocyanins in leaves: light attenuators or antioxidants?[J/OL]. Functional plant biology: FPB, 2003, 30(8): 865-873. DOI:10.1071/FP03118.
GOULD K S. Nature’s Swiss Army Knife: The Diverse Protective Roles of Anthocyanins in Leaves[J/OL]. BioMed Research International, NaN/NaN/NaN, 2004(5): 314-320. DOI:10.1155/S1110724304406147.
New insights into the regulation of anthocyanin biosynthesis in fruits[J/OL]. Trends in Plant Science, 2013, 18(9): 477-483. DOI:10.1016/j.tplants.2013.06.003.
Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes[J/OL]. Trends in Plant Science, 2015, 20(3): 176-185. DOI:10.1016/j.tplants.2014.12.001.
XIE Y, CHEN P, YAN Y, et al. An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple[J/OL]. New Phytologist, 2018, 218(1): 201-218. DOI:10.1111/nph.14952.
AN J, WANG X, ZHANG X, et al. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1‐mediated degradation[J/OL]. Plant Biotechnology Journal, 2020, 18(2): 337-353. DOI:10.1111/pbi.13201.
AN J, WANG X, ZHANG X, et al. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1‐mediated degradation[J/OL]. Plant Biotechnology Journal, 2020, 18(2): 337-353. DOI:10.1111/pbi.13201.
AN J P, LI R, QU F J, et al. R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple[J/OL]. The Plant Journal, 2018, 96(3): 562-577. DOI:10.1111/tpj.14050.
ZHANG S, CHEN Y, ZHAO L, et al. A novel NAC transcription factor, MdNAC42, regulates anthocyanin accumulation in red-fleshed apple by interacting with MdMYB10[J/OL]. Tree Physiology, 2020, 40(3): 413-423. DOI:10.1093/treephys/tpaa004.
DONG M A, FARRÉ E M, THOMASHOW M F. CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis[J/OL]. Proceedings of the National Academy of Sciences, 2011, 108(17): 7241-7246. DOI:10.1073/pnas.1103741108.
NIU C dong, SHI H ran, ZHANG Z tong, et al. MdMYB88/124 modulates apple tree microRNA biogenesis through post-transcription processing and/or transcription pathway[J/OL]. Acta Physiologiae Plantarum, 2022, 44(8): 86. DOI:10.1007/s11738-022-03424-4.
LI P, LI Y J, ZHANG F J, et al. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation[J/OL]. The Plant Journal, 2017, 89(1): 85-103. DOI:10.1111/tpj.13324.
WANG Y, MAO Z, JIANG H, et al. A feedback loop involving MdMYB108L and MdHY5 controls apple cold tolerance[J/OL]. Biochemical and Biophysical Research Communications, 2019, 512(2): 381-386. DOI:10.1016/j.bbrc.2019.03.101.
XU H, WANG N, LIU J, et al. The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes[J/OL]. Plant Molecular Biology, 2017, 94(1-2): 149-165. DOI:10.1007/s11103-017-0601-0.
XU H, YANG G, ZHANG J, et al. Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus[J/OL]. Biochemical and Biophysical Research Communications, 2018, 500(2): 405-410. DOI:10.1016/j.bbrc.2018.04.088.
ZHANG C L, HU X, ZHANG Y L, et al. An apple long-chain acyl-CoA synthetase 2 gene enhances plant resistance to abiotic stress by regulating the accumulation of cuticular wax[J/OL]. Tree Physiology, 2020, 40(10): 1450-1465. DOI:10.1093/treephys/tpaa079.
RAFFAELE S, VAILLEAU F, LÉGER A, et al. A MYB Transcription Factor Regulates Very-Long-Chain Fatty Acid Biosynthesis for Activation of the Hypersensitive Cell Death Response in Arabidopsis[J/OL]. The Plant Cell, 2008, 20(3): 752-767. DOI:10.1105/tpc.107.054858.
CHEN K, SONG M, GUO Y, et al. Md MYB 46 could enhance salt and osmotic stress tolerance in apple by directly activating stress‐responsive signals[J/OL]. Plant Biotechnology Journal, 2019, 17(12): 2341-2355. DOI:10.1111/pbi.13151.
GENG D, CHEN P, SHEN X, et al. MdMYB88 and MdMYB124 Enhance Drought Tolerance by Modulating Root Vessels and Cell Walls in Apple[J/OL]. Plant Physiology, 2018, 178(3): 1296-1309. DOI:10.1104/pp.18.00502.
SU Q, ZHENG X, TIAN Y, et al. Exogenous Brassinolide Alleviates Salt Stress in Malus hupehensis Rehd. by Regulating the Transcription of NHX-Type Na+(K+)/H+ Antiporters[J/OL]. Frontiers in Plant Science, 2020, 11: 479411. DOI:10.3389/fpls.2020.00038.
ZHU J K. Abiotic Stress Signaling and Responses in Plants[J/OL]. Cell, 2016, 167(2): 313-324. DOI:10.1016/j.cell.2016.08.029.
LIU X, CAI S, WANG G, et al. Halophytic NHXs confer salt tolerance by altering cytosolic and vacuolar K+ and Na+ in Arabidopsis root cell[J/OL]. Plant Growth Regulation, 2017, 82(2): 333-351. DOI:10.1007/s10725-017-0262-7.
WANG N, QU C, WANG Y, et al. MdMYB4 enhances apple callus salt tolerance by increasing MdNHX1 expression levels[J/OL]. Plant Cell, Tissue and Organ Culture (PCTOC), 2017, 131(2): 283-293. DOI:10.1007/s11240-017-1283-7.
DU B, LIU H, DONG K, et al. Over-Expression of an R2R3 MYB Gene, MdMYB108L, Enhances Tolerance to Salt Stress in Transgenic Plants[J/OL]. International Journal of Molecular Sciences, 2022, 23(16): 9428. DOI:10.3390/ijms23169428.
QUINTERO F J, MARTINEZ-ATIENZA J, VILLALTA I, et al. Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain[J/OL]. Proceedings of the National Academy of Sciences, 2011, 108(6): 2611-2616. DOI:10.1073/pnas.1018921108.
Hormone signaling pathways under stress combinations[J/OL]. Plant Signaling & Behavior[2023-08-27]. https://www.tandfonline.com/doi/abs/10.1080/15592324.2016.1247139.
ABA transport and transporters: Trends in Plant Science[EB/OL]. [2023-08-27]. https://www.cell.com/trends/plant-science/fulltext/S1360-1385(13)00022-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1360138513000228%3Fshowall%3Dtrue.
Systemic Acquired Resistance. | The Plant Cell | Oxford Academic[EB/OL]. [2023-08-27]. https://academic.oup.com/plcell/article/8/10/1809/5985226.
ZHANG W, YANG X, QIU D, et al. PeaT1-induced systemic acquired resistance in tobacco follows salicylic acid-dependent pathway[J/OL]. Molecular Biology Reports, 2011, 38(4): 2549-2556. DOI:10.1007/s11033-010-0393-7.
GU K D, ZHANG Q Y, YU J Q, et al. R2R3-MYB Transcription Factor MdMYB73 Confers Increased Resistance to the Fungal Pathogen Botryosphaeria dothidea in Apples via the Salicylic Acid Pathway[J/OL]. Journal of Agricultural and Food Chemistry, 2021, 69(1): 447-458. DOI:10.1021/acs.jafc.0c06740.
WANG R K, CAO Z H, HAO Y J. Overexpression of a R2R3 MYB gene MdSIMYB1 increases tolerance to multiple stresses in transgenic tobacco and apples[J/OL]. Physiologia Plantarum, 2014, 150(1): 76-87. DOI:10.1111/ppl.12069.
BAI S, TUAN P A, SAITO T, et al. Epigenetic regulation of MdMYB1 is associated with paper bagging-induced red pigmentation of apples[J/OL]. Planta, 2016, 244(3): 573-586. DOI:10.1007/s00425-016-2524-4.
ZHANG B, YANG H, QU D, et al. The MdBBX22–miR858– MdMYB9/11/12 module regulates proanthocyanidin biosynthesis in apple peel[J/OL]. Plant Biotechnology Journal, 2022, 20(9): 1683-1700. DOI:10.1111/pbi.13839.
LIU W, WANG Y, YU L, et al. MdWRKY11 Participates in Anthocyanin Accumulation in Red-Fleshed Apples by Affecting MYB Transcription Factors and the Photoresponse Factor MdHY5[J/OL]. Journal of Agricultural and Food Chemistry, 2019, 67(32): 8783-8793. DOI:10.1021/acs.jafc.9b02920.
MAO Z, JIANG H, WANG S, et al. The MdHY5-MdWRKY41-MdMYB transcription factor cascade regulates the anthocyanin and proanthocyanidin biosynthesis in red-fleshed apple[J/OL]. Plant Science, 2021, 306: 110848. DOI:10.1016/j.plantsci.2021.110848.
JIANG H, ZHOU L J, GAO H N, et al. The transcription factor MdMYB2 influences cold tolerance and anthocyanin accumulation by activating SUMO E3 ligase MdSIZ1 in apple[J/OL]. Plant Physiology, 2022, 189(4): 2044-2060. DOI:10.1093/plphys/kiac211.
ZHOU L J, LI Y Y, ZHANG R F, et al. The small ubiquitin-like modifier E3 ligase MdSIZ1 promotes anthocyanin accumulation by sumoylating MdMYB1 under low-temperature conditions in apple[J/OL]. Plant, Cell & Environment, 2017, 40(10): 2068-2080. DOI:10.1111/pce.12978.
AN J P, LIU X, LI H H, et al. Apple RING E3 ligase MdMIEL1 inhibits anthocyanin accumulation by ubiquitinating and degrading MdMYB1 protein[J/OL]. Plant and Cell Physiology, 2017, 58(11): 1953-1962. DOI:10.1093/pcp/pcx129.
LI Y Y, MAO K, ZHAO C, et al. MdCOP1 Ubiquitin E3 Ligases Interact with MdMYB1 to Regulate Light-Induced Anthocyanin Biosynthesis and Red Fruit Coloration in Apple[J/OL]. Plant Physiology, 2012, 160(2): 1011-1022. DOI:10.1104/pp.112.199703.
WANG X F, AN J P, LIU X, et al. The Nitrate-Responsive Protein MdBT2 Regulates Anthocyanin Biosynthesis by Interacting with the MdMYB1 Transcription Factor[J/OL]. Plant Physiology, 2018, 178(2): 890-906. DOI:10.1104/pp.18.00244.
CHEN L, HU B, QIN Y, et al. Advance of the negative regulation of anthocyanin biosynthesis by MYB transcription factors[J/OL]. Plant Physiology and Biochemistry, 2019, 136: 178-187. DOI:10.1016/j.plaphy.2019.01.024.
Downloads
Published
Conference Proceedings Volume
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.







