Research Progress of Imagingomics in Coronary CTA Evaluation of Vulnerable Plaques
DOI:
https://doi.org/10.62051/ijphmr.v3n2.06Keywords:
Radiomics, Coronary, CTA, Vulnerable plaqueAbstract
When vulnerable plaques in the coronary artery are ruptured or corrosive, they can easily lead to the occurrence of acute coronary syndrome (ACS). Today, various intracoronary imaging technologies can be used to detect vulnerable plaques. Traditional coronary CT angiography (CCTA, hereinafter referred to as coronary CTA) is considered a first-line choice for risk stratification of cardiovascular disease and to evaluate stable or unstable plaques. However, it mainly relies on subjective visual evaluation of diagnostic physicians and is prone to ignore many important features of vulnerable plaques. Imaging omics extracts many imaging features that cannot be captured by the human body from coronary CTA, which can better analyze and judge vulnerable plaques. This paper mainly reviews the application of imagingomics to evaluate the characteristics of vulnerable plaques in coronary CTA and related heart disease and other imaging techniques for vulnerable plaques and related clinical risk events.
References
[1] Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC) [J]. European Heart Journal, 2020, 41(3):407-477. DOI:10.1093/eurheartj/ehz425.
[2] Yang S, Koo BK, Narula J. Interactions Between Morphological Plaque Characteristics and Coronary Physiology: From Pathophysiological Basis to Clinical Implications [J]. JACC Cardiovasc Imaging, 2022, 15(6):1139-1151. DOI:10.1016/j.jcmg.2021.10.009.
[3] Gu Xiaoyan, Xie Yuhai, Gao Xu, et al. Diagnostic value of computed tomography angioimaging on critical coronary artery lesions [J]. Journal of Vascular and Intraluminal Vascular Surgery, 2022, 8(06):708-712. DOI:10.19418/j.cnki.issn2096-0646.2022.06.14.
[4] Shang J, Guo Y, Ma Y, et al. Cardiac computed tomography radiomics: a narrative review of current status and future directions [J]. Quant Imaging Med Surg, 2022, 12(6):3436-3453. DOI:10.21037/qims-21-1022.
[5] Tesche C, Bauer MJ, Baquet M, et al. Improved long-term prognostic value of coronary CT angiography-derived plaque measures and clinical parameters on adverse cardiac outcome using machine learning [J]. Eur Radiol, 2021, 31(1):486-493. DOI:10.1007/s00330-020-07083-2.
[6] Williams MC, Moss AJ, Dweck M, et al. Coronary Artery Plaque Characteristics Associated With Adverse Outcomes in the SCOT-HEART Study [J]. J Am Coll Cardiol, 2019, 73(3):291-301. DOI:10.1016/j.jacc.2018.10.066.
[7] Chang HJ, Lin FY, Lee SE, et al. Coronary Atherosclerotic Precursors of Acute Coronary Syndromes [J]. J Am Coll Cardiol, 2018, 71(22):2511-2522. DOI:10.1016/j.jacc.2018.02.079.
[8] Williams MC, Kwiecinski J, Doris M, et al. Low-Attenuation Noncalcified Plaque on Coronary Computed Tomography Angiography Predicts Myocardial Infarction: Results From the Multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART) [J]. Circulation, 2020,141(18):1452-1462. DOI:10.1161/CIRCULATIONAHA.119.044720.
[9] Narula J, Chandrashekhar Y, Ahmadi A, et al. SCCT 2021 Expert Consensus Document on Coronary Computed Tomographic Angiography: A Report of the Society of Cardiovascular Computed Tomography [J]. J Cardiovasc Computed Tomogr, 2021,15(3):192-217. DOI:10.1016/j.jcct.2020.11.001.
[10] Weng ST, Lai QL, Cai MT, et al. Detecting vulnerable carotid plaque and its component characteristics: Progress in related imaging techniques [J]. Front Neurol, 2022, 13:982147. DOI:10.3389/fneur.2022.982147.
[11] Fukase T, Dohi T, Fujimoto S, et al. Relationship between coronary high-intensity plaques on T1-weighted imaging by cardiovascular magnetic resonance and vulnerable plaque features by near-infrared spectroscopy and intravascular ultrasound: a prospective cohort study [J]. J Cardiovasc Magn Reson, 2023, 25(1):4. DOI:10.1186/s12968-023-00916-1.
[12] Hu Xinyang, Wu Xianpeng. Basic principles and research progress of blood flow reserve fractions from coronary angiography and intravascular imaging sources [J]. Journal of Clinical Cardiovascular Disease, 2023, 39(10):745-748. DOI:10.13201/j.issn.1001-1439.2023.10.002.
[13] Mintz GS, Matsumura M, Ali Z, et al. Clinical Utility of Intravascular Imaging: Past, Present, and Future [J]. JACC Cardiovasc Imaging, 2022, 15(10):1799-1820. DOI:10.1016/j.jcmg.2022.04.026.
[14] Huang X, Bajaj R, Li Y, et al. POST-IVUS: A perceptual organisation-aware selective transformer framework for intravascular ultrasound segmentation [J]. Med Image Anal, 2023, 89:102922. DOI:10.1016/j.media.2023.102922.
[15] Vazquez-Fuster JI, Molina-Lopez VH, Ortiz C I. Unveiling the Heart of the Matter: Intravascular Ultrasound in Acute Myocardial Infarction [J]. Cureus, 2023, 15(10):e47020. DOI:10.7759/cureus.47020.
[16] Lambin P, Leijenaar R, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine [J]. Nat Rev Clin Oncol, 2017, 14(12):749-762. DOI:10.1038/nrclinonc.2017.141.
[17] Mayerhoefer ME, Materka A, Langs G, et al. Introduction to Radiomics [J]. J Nucl Med, 2020, 61(4):488-495. DOI:10.2967/jnumed.118.222893.
[18] Polidori T, De Santis D, Rucci C, et al. Radiomics applications in cardiac imaging: a comprehensive review [J]. Radiol Med, 2023, 128(8):922-933. DOI:10.1007/s11547-023-01658-x.
[19] Zhang X, Zhang Y, Zhang G, et al. Deep Learning With Radiomics for Disease Diagnosis and Treatment: Challenges and Potential [J]. Front Oncol, 2022,12:773840. DOI:10.3389/fonc.2022.773840.
[20] Avanzo M, Wei L, Stancanello J, et al. Machine and deep learning methods for radiomics [J]. Med Phys, 2020, 47(5):e185-e202. DOI:10.1002/mp.13678.
[21] Huang EP, O'Connor J, McShane LM, et al. Criteria for the translation of radiomics into clinically useful tests [J]. Nat Rev Clin Oncol, 2023, 20(2):69-82. DOI:10.1038/s41571-022-00707-0.
[22] Kai Huihua, Shen Dong, Pan Changjie. Feasibility of coronary CTA quantitative parameters to predict vulnerability of thin-fiber cap atherosclerotic plaques [J]. Radiology Practice, 2021, 36(08):1000-1004. DOI:10.13609/j.cnki.1000-0313.2021.08.010.
[23] Cao JJ, Shen L, Nguyen J, et al. Accuracy and limitation of plaque detection by coronary CTA: a section-to-section comparison with optical coherence tomography [J]. Sci Rep, 2023, 13(1):11845. DOI:10.1038/s41598-023-38675-9.
[24] Murgia A, Balestrieri A, Crivelli P, et al. Cardiac computed tomography radiomics: an emerging tool for the non-invasive assessment of cornary atherosclerosis [J]. Cardiovasc Diagn Ther, 2020, 10(6):2005-2017. DOI:10.21037/cdt-20-156.
[25] Kolossváry M, Karády J, Kikuchi Y, et al. Radiomics versus Visual and Histogram-based Assessment to Identify Atheromatous Lesions at Coronary CT Angiography: An ex Vivo Study [J]. Radiology, 2019, 293(1):89-96. DOI:10.1148/radiol.2019190407.
[26] Li XN, Yin WH, Sun Y, et al. Identification of pathology-confirmed vulnerable atherosclerotic lesions by coronary computed tomography angiography using radiomics analysis [J]. Eur Radiol, 2022, 32(6):4003-4013. DOI:10.1007/s00330-021-08518-0.
[27] Lin A, Kolossváry M, Cadet S, et al. Radiomics-Based Precision Phenotyping Identifies Unstable Coronary Plaques From Computed Tomography Angiography [J]. JACC Cardiovasc Imaging, 2022, 15(5):859-871. DOI:10.1016/j.jcmg.2021.11.016.
[28] Chen Q, Pan T, Wang YN, et al. A Coronary CT Angiography Radiomics Model to Identify Vulnerable Plaque and Predict Cardiovascular Events [J]. Radiology, 2023, 307(2): e221693. DOI:10.1148/radiol.221693.
[29] Feng C, Chen R, Dong S, et al. Predicting coronary plaque progression with conventional plaque parameters and radiomics features derived from coronary CT angiography [J]. Eur Radiol, 2023, 33(12):8513-8520. DOI:10.1007/s00330-023-09809-4.
[30] Lin A, van Diemen PA, Motwani M, et al. Machine Learning From Quantitative Coronary Computed Tomography Angiography Predicts Fractional Flow Reserve-Defined Ischemia and Impaired Myocardial Blood Flow [J]. Circ Cardiovasc Imaging, 2022, 15(10): e14369. DOI:10.1161/CIRCIMAGING.122.014369.
[31] Jing Mengyuan, Zhu Hao, Sun Jianqing, et al. Predicting acute coronary syndrome based on imagingomics of pericoronary adipose tissue [J]. Journal of Lanzhou University (Medical Edition), 2022, 48(11):48-53. DOI:10.13885/j.issn.1000-2812.2022.11.010.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Public Health and Medical Research

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.