Near-Infrared Photoimmunotherapy of Malignancy

Authors

  • Tiancheng Yu

DOI:

https://doi.org/10.62051/ijphmr.v3n2.01

Keywords:

NIR-PIT, Malignancy, OSCC, Cancer

Abstract

In the contemporary era, there has been a marked escalation in the frequency of malignant neoplasms, posing a substantial threat to the health and welfare of the human race. Despite the array of therapeutic modalities currently employed, cancer treatments have yet to reach a pinnacle of effectiveness. Standard interventions, including surgical resection, radiation treatment, and chemical therapeutics, although capable of curbing the proliferation of neoplastic cells, are frequently accompanied by considerable morbidity. The adoption of near-infrared photoimmunotherapy represents an innovative therapeutic paradigm, which selectively eliminates cancerous cells with heightened accuracy, minimal invasiveness, and straightforward application. The potential for this treatment approach to be merged with supplementary medicinal substances exists, enhancing its curative impact. An exhaustive examination of the latest progress in cancer therapy utilizing near-infrared light-based immunotherapy is delineated in this document, including research performed both in China and across the globe. This analysis aims to establish a comprehensive database, aiding in the practical utilization within the clinical sphere and bolstering the pursuit of additional scholarly exploration within the field.

References

[1] Xia, C., Dong, X., Li, H., Cao, M., Sun, D., He, S., et al. (2022). Cancer statistics in china and united states, 2022: Profiles, trends, and determinants. Chinese medical journal, 135(05), 584-590.

[2] Hubbell, J.A., Thomas, S.N., & Swartz, M.A. (2009). Materials engineering for immunomodulation. Nature, 462(7272), 449-460.

[3] Zou, J., Li, L., Yang, Z., & Chen, X. (2021). Phototherapy meets immunotherapy: A win–win strategy to fight against cancer. Nanophotonics, 10(12), 3229-3245.

[4] M., M.T., Chaoyu, Z., Wenjie, S., Marwah, A., Felix, Z., Ivo, M., et al. (2023). Near infrared photoimmunotherapy: A review of recent progress and their target molecules for cancer therapy. International Journal of Molecular Sciences, 24(3), 2655-2655.

[5] Kishimoto, S., Bernardo, M., Saito, K., Koyasu, S., Mitchell, J.B., Choyke, P.L., et al. (2015). Evaluation of oxygen dependence on in vitro and in vivo cytotoxicity of photoimmunotherapy using ir-700–antibody conjugates. Free Radical Biology and Medicine, 85, 24-32.

[6] Kobayashi, H., Furusawa, A., Rosenberg, A., & Choyke, P.L. (2021). Near-infrared photoimmunotherapy of cancer: A new approach that kills cancer cells and enhances anti-cancer host immunity. International immunology, 33(1), 7-15.

[7] Hideo, T., Shino, M., Masato, K., Yuto, G., Mei, H., Tetsuya, T., et al. (2022). Axial-ligand-cleavable silicon phthalocyanines triggered by near-infrared light toward design of photosensitizers for photoimmunotherapy. Journal of Photochemistry & Photobiology, A: Chemistry, 426.

[8] Ryuhei, O., Takuya, K., Aki, F., Fuyuki, I., Hiroaki, W., L., C.P., et al. (2021). Local depletion of immune checkpoint ligand ctla4 expressing cells in tumor beds enhances antitumor host immunity. Advanced Therapeutics, 4(5).

[9] Takuya, K., Hiroshi, F., Aki, F., Ryuhei, O., Hiroaki, W., Hideyuki, F., et al. (2022). Selective depletion of polymorphonuclear myeloid derived suppressor cells in tumor beds with near infrared photoimmunotherapy enhances host immune response. OncoImmunology, 11(1), 2152248-2152248.

[10] Sato, K., Sato, N., Xu, B., Nakamura, Y., Nagaya, T., Choyke, P.L., et al. (2016). Spatially selective depletion of tumor-associated regulatory t cells with near-infrared photoimmunotherapy. Science Translational Medicine, 8(352), 352ra110-352ra110.

[11] Kobayashi, H. (2020). Near infrared photoimmunotherapy: A new type of immune theranostic technology for cancer. Paper presented at the Photonics Europe.

[12] Hiroaki, W., Takuya, K., Aki, F., L., C.P., & Hisataka, K. (2021). Near infrared photoimmunotherapy of cancer; possible clinical applications. Nanophotonics, 10(12), 3135-3151.

[13] Glabman, R.A., Olkowski, C.P., Minor, H.A., Bassel, L.L., Kedei, N., Choyke, P.L., et al. (2024). Tumor suppression by anti-fibroblast activation protein near-infrared photoimmunotherapy targeting cancer-associated fibroblasts. Cancers, 16(2), 449-.

[14] Takuya, K., Aki, F., Ryuhei, O., Fuyuki, I., Hiroaki, W., Hideyuki, F., et al. (2022). Near-infrared photoimmunotherapy targeting podoplanin-expressing cancer cells and cancer-associated fibroblasts. Molecular cancer therapeutics, 22(1).

[15] Nakajima, K., & Ogawa, M. (2020). Phototoxicity in near-infrared photoimmunotherapy is influenced by the subcellular localization of antibody-ir700. Photodiagnosis and Photodynamic Therapy, 31(prepublish), 101926.

[16] Kazuomi, T., Shunichi, T., Hirotoshi, Y., Yuko, N., Yoshitaka, I., Toshinori, M., et al. (2021). Her2 targeting near-infrared photoimmunotherapy for a cddp-resistant small-cell lung cancer. Cancer medicine, 10(24), 8808-8819.

[17] Shunichi, T., Kohei, M., Yuko, N., Kazuomi, T., Hirotoshi, Y., Chiaki, K., et al. (2021). Spatiotemporal depletion of tumor-associated immune checkpoint pd-l1 with near-infrared photoimmunotherapy promotes antitumor immunity. Journal for immunotherapy of cancer, 9(11).

[18] Aki, F., Ryuhei, O., Fuyuki, I., Hiroaki, W., Takuya, K., Hideyuki, F., et al. (2022). Cd29 targeted near-infrared photoimmunotherapy (nir-pit) in the treatment of a pigmented melanoma model. OncoImmunology, 11(1), 2019922-2019922.

[19] Takuya, K., Hiroaki, W., Aki, F., L, C.P., & Hisataka, K. (2021). Near infrared photoimmunotherapy; a review of targets for cancer therapy. Cancers, 13(11).

[20] Kato, T., Noma, K., Furusawa, A., Kobayashi, H., & Fujiwara, T. (2023). [novel therapy targeting the cancer microenvironment using near-infrared photoimmunotherapy leading to tumor immune activation]. Gan to kagaku ryoho. Cancer & chemotherapy, 50(13), 1361-1363.

[21] Okamoto, I., Okada, T., Tokashiki, K., & Tsukahara, K. (2022). A case treated with photoimmunotherapy under a navigation system for recurrent lesions of the lateral pterygoid muscle. in vivo, 36(2), 1035-1040.

[22] Makino, T., Sato, Y., Uraguchi, K., Naoi, Y., Fukuda, Y., & Ando, M. (2024). Near-infrared photoimmunotherapy for salivary duct carcinoma. Auris Nasus Larynx, 51(2), 323-327.

[23] Daisuke, N., Hidenori, S., Shintaro, B., Hoshino, T., Michi, S., & Nobuhiro, H. (2022). Near-infrared photoimmunotherapy for oropharyngeal cancer. Cancers, 14(22), 5662-5662.

[24] Hiromasa, I., Daisuke, N., Daisuke, M., Katsuhiro, M., Shintaro, B., Hoshino, T., et al. (2023). Changes in serum damps and cytokines/chemokines during near-infrared photoimmunotherapy for patients with head and neck cancer. Cancer medicine, 13(1).

[25] Yamaguchi, H., Pantarat, N., Suzuki, T., & Evdokiou, A. (2019). Near-infrared photoimmunotherapy using a small protein mimetic for her2-overexpressing breast cancer. International Journal of Molecular Sciences, 20(23), 5835.

[26] Miyazaki, N.L., Furusawa, A., Choyke, P.L., & Kobayashi, H. (2023). Review of rm-1929 near-infrared photoimmunotherapy clinical efficacy for unresectable and/or recurrent head and neck squamous cell carcinoma. Cancers, 15(21).

[27] Susumu, Y., Miho, K., Nobuhiko, O., Toshinori, Y., & Makoto, S. (2022). Trastuzumab-based near-infrared photoimmunotherapy in xenograft mouse of breast cancer. Cancer medicine, 12(4), 4579-4589.

[28] Nagaya, T., Sato, K., Harada, T., Nakamura, Y., Choyke, P.L., & Kobayashi, H. (2017). Near infrared photoimmunotherapy targeting egfr positive triple negative breast cancer: Optimizing the conjugate-light regimen. PLoS ONE, 10(8), e0136829.

[29] Yingshu, C., Yuanyuan, X., Yi, L., Yuanyuan, S., Jia, H., Jia, J., et al. (2023). Antibody drug conjugates of near-infrared photoimmunotherapy (nir-pit) in breast cancers. Technology in cancer research & treatment, 22, 15330338221145992-15330338221145992.

[30] Hiroaki, S., Kazuhiro, N., Toshiaki, O., Kento, K., Masaaki, A., Teruki, K., et al. (2022). Dual-targeted near-infrared photoimmunotherapy for esophageal cancer and cancer-associated fibroblasts in the tumor microenvironment. Scientific Reports, 12(1), 20152-20152.

[31] Sato, K., Watanabe, R., Hanaoka, H., Harada, T., Nakajima, T., Kim, I., et al. (2014). Photoimmunotherapy: Comparative effectiveness of two monoclonal antibodies targeting the epidermal growth factor receptor. Molecular Oncology, 8(3), 620-632.

[32] Isobe, Y., Sato, K., Nishinaga, Y., Takahashi, K., Taki, S., Yasui, H., et al. (2020). Near infrared photoimmunotherapy targeting dll3 for small cell lung cancer. EBioMedicine, 52.

[33] Hideyuki, F., Takuya, K., Hiroaki, W., Aki, F., L., C.P., & Hisataka, K. (2022). Endoscopic applications of near-infrared photoimmunotherapy (nir-pit) in cancers of the digestive and respiratory tracts. Biomedicines, 10(4), 846-846.

[34] Obaid, G., Chambrier, D.I., Cook, P.M.J., & Russell, P.D.A. (2012). Targeting the oncofetal thomsen–friedenreich disaccharide using jacalin‐peg phthalocyanine gold nanoparticles for photodynamic cancer therapy. Angewandte Chemie, 124(25), 6262-6266.

[35] Seiichiro, T., Hiroshi, F., Paden, K.A., Takuya, K., Aki, F., Shuhei, O., et al. (2023). Near-infrared photoimmunotherapy in the models of hepatocellular carcinomas using cetuximab-ir700. Cancer science, 114(12), 4654-4663.

[36] Tadanobu, N., L, C.P., & Hisataka, K. (2020). Near-infrared photoimmunotherapy for cancers of the gastrointestinal tract. Digestion, 1-8.

[37] Department of Urology, S.U.S.o.M., Stanford, California., Biology, I.f.S.C., Regenerative Medicine, S.U., Stanford, California., Otolaryngology-Head, D.o., Neck Surgery, S.U.S.o.M., Stanford, California., Otolaryngology-Head, D.o., et al. (2019). Cd47-targeted near-infrared photoimmunotherapy for human bladder cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 25(12), 3561-3571.

[38] Molecular Imaging Program, C.f.C.R., National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States., Molecular Imaging Program, C.f.C.R., National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States., Molecular Imaging Program, C.f.C.R., National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States., Molecular Imaging Program, C.f.C.R., National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States., Molecular Imaging Program, C.f.C.R., National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States., & Molecular Imaging Program, C.f.C.R., National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States. Electronic address: kobayash@mail.nih.gov. (2016). Near infrared photoimmunotherapy of b-cell lymphoma. Molecular Oncology, 10(9), 1404-1414.

[39] Silic-Benussi, M., Saponeri, A., Michelotto, A., Russo, I., Colombo, A., Pelizzo, M.G., et al. (2021). Near infrared photoimmunotherapy targeting the cutaneous lymphocyte antigen for mycosis fungoides. Expert Opinion on Biological Therapy, 21(7), 977-981.

[40] Okada, R., Ito, T., Kawabe, H., Tsutsumi, T., & Asakage, T. (2024). Mixed reality-supported near-infrared photoimmunotherapy for oropharyngeal cancer: A case report. Annals of medicine and surgery (2012), 86(9), 5551-5556.

Downloads

Published

27-03-2025

Issue

Section

Articles

How to Cite

Yu, T. (2025). Near-Infrared Photoimmunotherapy of Malignancy. International Journal of Public Health and Medical Research, 3(2), 1-13. https://doi.org/10.62051/ijphmr.v3n2.01