(Poly)phenol-rich food and cardio-metabolic health
DOI:
https://doi.org/10.62051/4pt2w058Keywords:
(poly)phenols, cardio-metabolic diseases, hypertension, atherosclerosis, type 2 diabetes.Abstract
Due to the changes in people's diet structure caused by economic development, cardio-metabolic disease has also become a concernthat more people care about or need to alleviate. (Poly)phenols, a chemical widely found in natural plants or fruits, such as, berries and tea, are thought to play an important role in alleviating cardiometabolic disease. As a result, (poly)phenols rich foods can offer positive effects in general cardiovascular system, and multiple evidence present in helping improve glycemic control, blood pressure and blood lipid level. However, controversy remains , especially in their effects on relieving metabolic syndrome, and the effects of (poly)phenol-rich foods on the cardiovascular system could be differed based on origin, for example, quercetin is associated with blood pressure, but cannot contribute to blood glucose problem as much as they provide in hypertension, while anthocyanins signally relieve glycemic disorder. Meanwhile, details such as the daily intake of (poly)phenols with health benefits remains to be explored.
Downloads
References
López-Jaramillo, P., Otero, J., Camacho, P. A., Baldeón, M., & Fornasini, M. (2018). Reevaluating nutrition as a risk factor for cardio-metabolic diseases. Colombia medica, 49(2), 175-181.
Cheng, X., Ma, T., Ouyang, F., Zhang, G., & Bai, Y. (2022). Trends in the Prevalence of Cardiometabolic Multimorbidity in the United States, 1999-2018. International journal of environmental research and public health, 19(8), 4726. https://doi.org/10.3390/ijerph19084726
Giacco, R., Costabile, G., Fatati, G., Frittitta, L., Maiorino, M. I., Marelli, G., ... & Vitale, M. (2020). Effects of (poly)phenols on cardio-metabolic risk factors and risk of type 2 diabetes. A joint position statement of the Diabetes and Nutrition Study Group of the Italian Society of Diabetology (SID), the Italian Association of Dietetics and Clinical Nutrition (ADI) and the Italian Association of Medical Diabetologists (AMD). Nutrition, Metabolism and Cardiovascular Diseases, 30(3), 355-367.
Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American journal of clinical nutrition, 79(5), 727–747. https://doi.org/10.1093/ajcn/79.5.727
GBD 2017 Mortality Collaborators (2018). Global, regional, and national age-sex-specific mortality and life expectancy, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England), 392(10159), 1684–1735. https://doi.org/10.1016/S0140-6736(18)31891-9
Province of British Columbia (2021). Cardiovascular disease - primary prevention. Province of British Columbia. https://www2.gov.bc.ca/gov/content/health/practitioner-professional-resources/bc-guidelines/cardiovascular-disease, Accessed August 17, 2023.
Anderson, T. J., Grégoire, J., Pearson, G. J., Barry, A. R., Couture, P., Dawes, M., ... & Ward, R. (2016). 2016 Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Canadian Journal of Cardiology, 32(11), 1263-1282.
Brüll, V., Burak, C., Stoffel-Wagner, B., Wolffram, S., Nickenig, G., Müller, C., Langguth, P., Alteheld, B., Fimmers, R., Naaf, S., Zimmermann, B. F., Stehle, P., & Egert, S. (2015). Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: a randomised double-blinded placebo-controlled cross-over trial. The British journal of nutrition, 114(8), 1263–1277. https://doi.org/10.1017/S0007114515002950
Potì, F., Santi, D., Spaggiari, G., Zimetti, F., & Zanotti, I. (2019). (poly)phenols Health Effects on Cardiovascular and Neurodegenerative Disorders: A Review and Meta-Analysis. International journal of molecular sciences, 20(2), 351. https://doi.org/10.3390/ijms20020351
Engin A. (2017). The Definition and Prevalence of Obesity and Metabolic Syndrome. Advances in experimental medicine and biology, 960, 1–17. https://doi.org/10.1007/978-3-319-48382-5_1
Mitjavila, M. T., Fandos, M., Salas-Salvadó, J., Covas, M. I., Borrego, S., Estruch, R., Lamuela-Raventós, R., Corella, D., Martínez-Gonzalez, M. Á., Sánchez, J. M., Bulló, M., Fitó, M., Tormos, C., Cerdá, C., Casillas, R., Moreno, J. J., Iradi, A., Zaragoza, C., Chaves, J., & Sáez, G. T. (2013). The Mediterranean diet improves the systemic lipid and DNA oxidative damage in metabolic syndrome individuals. A randomized, controlled, trial. Clinical nutrition (Edinburgh, Scotland), 32(2), 172–178. https://doi.org/10.1016/j.clnu.2012.08.002
Jabczyk, M., Nowak, J., Hudzik, B., & Zubelewicz-Szkodzińska, B. (2021). Curcumin in Metabolic Health and Disease. Nutrients, 13(12), 4440. https://doi.org/10.3390/nu13124440
Bateni, Z., Rahimi, H. R., Hedayati, M., Afsharian, S., Goudarzi, R., & Sohrab, G. (2021). The effects of nano-curcumin supplementation on glycemic control, blood pressure, lipid profile, and insulin resistance in patients with the metabolic syndrome: A randomized, double-blind clinical trial. Phytotherapy research : PTR, 35(7), 3945–3953. https://doi.org/10.1002/ptr.7109
Wang, S., Liang, X., Yang, Q., Fu, X., Rogers, C. J., Zhu, M., Rodgers, B. D., Jiang, Q., Dodson, M. V., & Du, M. (2015). Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. International journal of obesity (2005), 39(6), 967–976. https://doi.org/10.1038/ijo.2015.23
Alberdi, G., Rodríguez, V. M., Miranda, J., Macarulla, M. T., Arias, N., Andrés-Lacueva, C., & Portillo, M. P. (2011). Changes in white adipose tissue metabolism induced by resveratrol in rats. Nutrition & metabolism, 8(1), 29. https://doi.org/10.1186/1743-7075-8-29
Poulsen, M. M., Vestergaard, P. F., Clasen, B. F., Radko, Y., Christensen, L. P., Stødkilde-Jørgensen, H., Møller, N., Jessen, N., Pedersen, S. B., & Jørgensen, J. O. (2013). High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes, 62(4), 1186–1195. https://doi.org/10.2337/db12-0975
Méndez-del Villar, M., González-Ortiz, M., Martínez-Abundis, E., Pérez-Rubio, K. G., & Lizárraga-Valdez, R. (2014). Effect of resveratrol administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Metabolic syndrome and related disorders, 12(10), 497–501. https://doi.org/10.1089/met.2014.0082
Chaplin, A., Carpéné, C., & Mercader, J. (2018). Resveratrol, Metabolic Syndrome, and Gut Microbiota. Nutrients, 10(11), 1651. https://doi.org/10.3390/nu10111651
Guariguata, L., Whiting, D. R., Hambleton, I., Beagley, J., Linnenkamp, U., & Shaw, J. E. (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes research and clinical practice, 103(2), 137–149. https://doi.org/10.1016/j.diabres.2013.11.002
Sun, Q., Wedick, N. M., Tworoger, S. S., Pan, A., Townsend, M. K., Cassidy, A., Franke, A. A., Rimm, E. B., Hu, F. B., & van Dam, R. M. (2015). Urinary Excretion of Select Dietary (poly)phenols Metabolites Is Associated with a Lower Risk of Type 2 Diabetes in Proximate but Not Remote Follow-Up in a Prospective Investigation in 2 Cohorts of US Women. The Journal of nutrition, 145(6), 1280–1288. https://doi.org/10.3945/jn.114.208736
Song, Y., Manson, J. E., Buring, J. E., Sesso, H. D., & Liu, S. (2005). Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis. Journal of the American College of Nutrition, 24(5), 376–384. https://doi.org/10.1080/07315724.2005.10719488
Scazzocchio, B., Varì, R., Filesi, C., D'Archivio, M., Santangelo, C., Giovannini, C., Iacovelli, A., Silecchia, G., Li Volti, G., Galvano, F., & Masella, R. (2011). Cyanidin-3-O-β-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARγ activity in human omental adipocytes. Diabetes, 60(9), 2234–2244. https://doi.org/10.2337/db10-1461
Kim, Y., Keogh, J. B., & Clifton, P. M. (2016). (poly)phenols and Glycemic Control. Nutrients, 8(1), 17. https://doi.org/10.3390/nu8010017
Hanhineva, K., Törrönen, R., Bondia-Pons, I., Pekkinen, J., Kolehmainen, M., Mykkänen, H., & Poutanen, K. (2010). Impact of dietary polyphenols on carbohydrate metabolism. International journal of molecular sciences, 11(4), 1365–1402. https://doi.org/10.3390/ijms11041365
Wang, X., Tian, J., Jiang, J., Li, L., Ying, X., Tian, H., & Nie, M. (2014). Effects of green tea or green tea extract on insulin sensitivity and glycaemic control in populations at risk of type 2 diabetes mellitus: a systematic review and meta-analysis of randomised controlled trials. Journal of human nutrition and dietetics : the official journal of the British Dietetic Association, 27(5), 501–512. https://doi.org/10.1111/jhn.12181
Zheng, X. X., Xu, Y. L., Li, S. H., Hui, R., Wu, Y. J., & Huang, X. H. (2013). Effects of green tea catechins with or without caffeine on glycemic control in adults: a meta-analysis of randomized controlled trials. The American journal of clinical nutrition, 97(4), 750–762. https://doi.org/10.3945/ajcn.111.032573
Wedick, N. M., Pan, A., Cassidy, A., Rimm, E. B., Sampson, L., Rosner, B., Willett, W., Hu, F. B., Sun, Q., & van Dam, R. M. (2012). Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. The American journal of clinical nutrition, 95(4), 925–933. https://doi.org/10.3945/ajcn.111.028894
Basu, A., Feng, D., Planinic, P., Ebersole, J. L., Lyons, T. J., & Alexander, J. M. (2021). Dietary Blueberry and Soluble Fiber Supplementation Reduces Risk of Gestational Diabetes in Women with Obesity in a Randomized Controlled Trial. The Journal of nutrition, 151(5), 1128–1138. https://doi.org/10.1093/jn/nxaa435
Lindsley, C. W. (2015). 2013 Trends and statistics for prescription medications in the United States: CNS highest ranked and record number of prescriptions dispensed. ACS Chemical Neuroscience, 6(3), 356-357.
Endale, M., Park, S. C., Kim, S., Kim, S. H., Yang, Y., Cho, J. Y., & Rhee, M. H. (2013). Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology, 218(12), 1452–1467. https://doi.org/10.1016/j.imbio.2013.04.019
Ishii, T., Ishikawa, M., Miyoshi, N., Yasunaga, M., Akagawa, M., Uchida, K., & Nakamura, Y. (2009). Catechol type (poly)phenols is a potential modifier of protein sulfhydryls: development and application of a new probe for understanding the dietary (poly)phenols actions. Chemical research in toxicology, 22(10), 1689–1698. https://doi.org/10.1021/tx900148k
Marunaka, Y., Marunaka, R., Sun, H., Yamamoto, T., Kanamura, N., Inui, T., & Taruno, A. (2017). Actions of Quercetin, a (poly)phenol, on Blood Pressure. Molecules (Basel, Switzerland), 22(2), 209. https://doi.org/10.3390/molecules22020209
Edwards, R. L., Lyon, T., Litwin, S. E., Rabovsky, A., Symons, J. D., & Jalili, T. (2007). Quercetin reduces blood pressure in hypertensive subjects. The Journal of nutrition, 137(11), 2405–2411. https://doi.org/10.1093/jn/137.11.2405
Zahedi, M., Ghiasvand, R., Feizi, A., Asgari, G., & Darvish, L. (2013). Does Quercetin Improve Cardiovascular Risk factors and Inflammatory Biomarkers in Women with Type 2 Diabetes: A Double-blind Randomized Controlled Clinical Trial. International journal of preventive medicine, 4(7), 777–785.
Serban, M. C., Sahebkar, A., Zanchetti, A., Mikhailidis, D. P., Howard, G., Antal, D., Andrica, F., Ahmed, A., Aronow, W. S., Muntner, P., Lip, G. Y., Graham, I., Wong, N., Rysz, J., Banach, M., & Lipid and Blood Pressure Meta‐analysis Collaboration (LBPMC) Group (2016). Effects of Quercetin on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of the American Heart Association, 5(7), e002713. https://doi.org/10.1161/JAHA.115.002713
Zhu Y., Xia M., Yang Y., Liu F., Li Z., Hao Y., Mi M., Jin T., Ling W. Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals. Clinical Chemistry, 57(11), 1524–1533, https://doi.org/10.1373/clinchem.2011.167361
Rodriguez-Mateos A., Rendeiro C., Bergillos-Meca T., Tabatabaee S., George T., Heiss C., Spencer J.P. Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: a randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. The American Journal of Clinical Nutrition, 98(5), 1179-1191, https://doi.org/10.3945/ajcn.113.066639
Garcia, C., & Blesso, C. N. (2021). Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free radical biology & medicine, 172, 152–166. https://doi.org/10.1016/j.freeradbiomed.2021.05.040
Ference, B. A., Ginsberg, H. N., Graham, I., Ray, K. K., Packard, C. J., Bruckert, E., ... & Catapano, A. L. (2017). Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. European heart journal, 38(32), 2459-2472.
Pan, B., Yu, B., Ren, H., Willard, B., Pan, L., Zu, L., ... & Zheng, L. (2013). High-density lipoprotein nitration and chlorination catalyzed by myeloperoxidase impair its effect of promoting endothelial repair. Free Radical Biology and Medicine, 60, 272-281.
Downloads
Published
Conference Proceedings Volume
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.