(Poly)phenol-rich food and cardio-metabolic health

Authors

  • Yu Hu

DOI:

https://doi.org/10.62051/4pt2w058

Keywords:

(poly)phenols, cardio-metabolic diseases, hypertension, atherosclerosis, type 2 diabetes.

Abstract

Due to the changes in people's diet structure caused by economic development, cardio-metabolic disease has also become a concernthat more people care about or need to alleviate. (Poly)phenols, a chemical widely found in natural plants or fruits, such as, berries and tea, are thought to play an important role in alleviating cardiometabolic disease. As a result, (poly)phenols rich foods can offer positive effects in general cardiovascular system, and multiple evidence present in helping improve glycemic control, blood pressure and blood lipid level. However, controversy remains , especially in their effects on relieving metabolic syndrome, and the effects of (poly)phenol-rich foods on the cardiovascular system could be differed based on origin, for example, quercetin is associated with blood pressure, but cannot contribute to blood glucose problem as much as they provide in hypertension, while anthocyanins signally relieve glycemic disorder. Meanwhile, details such as the daily intake of (poly)phenols with health benefits remains to be explored.

Downloads

Download data is not yet available.

References

López-Jaramillo, P., Otero, J., Camacho, P. A., Baldeón, M., & Fornasini, M. (2018). Reevaluating nutrition as a risk factor for cardio-metabolic diseases. Colombia medica, 49(2), 175-181.

Cheng, X., Ma, T., Ouyang, F., Zhang, G., & Bai, Y. (2022). Trends in the Prevalence of Cardiometabolic Multimorbidity in the United States, 1999-2018. International journal of environmental research and public health, 19(8), 4726. https://doi.org/10.3390/ijerph19084726

Giacco, R., Costabile, G., Fatati, G., Frittitta, L., Maiorino, M. I., Marelli, G., ... & Vitale, M. (2020). Effects of (poly)phenols on cardio-metabolic risk factors and risk of type 2 diabetes. A joint position statement of the Diabetes and Nutrition Study Group of the Italian Society of Diabetology (SID), the Italian Association of Dietetics and Clinical Nutrition (ADI) and the Italian Association of Medical Diabetologists (AMD). Nutrition, Metabolism and Cardiovascular Diseases, 30(3), 355-367.

Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American journal of clinical nutrition, 79(5), 727–747. https://doi.org/10.1093/ajcn/79.5.727

GBD 2017 Mortality Collaborators (2018). Global, regional, and national age-sex-specific mortality and life expectancy, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England), 392(10159), 1684–1735. https://doi.org/10.1016/S0140-6736(18)31891-9

Province of British Columbia (2021). Cardiovascular disease - primary prevention. Province of British Columbia. https://www2.gov.bc.ca/gov/content/health/practitioner-professional-resources/bc-guidelines/cardiovascular-disease, Accessed August 17, 2023.

Anderson, T. J., Grégoire, J., Pearson, G. J., Barry, A. R., Couture, P., Dawes, M., ... & Ward, R. (2016). 2016 Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Canadian Journal of Cardiology, 32(11), 1263-1282.

Brüll, V., Burak, C., Stoffel-Wagner, B., Wolffram, S., Nickenig, G., Müller, C., Langguth, P., Alteheld, B., Fimmers, R., Naaf, S., Zimmermann, B. F., Stehle, P., & Egert, S. (2015). Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: a randomised double-blinded placebo-controlled cross-over trial. The British journal of nutrition, 114(8), 1263–1277. https://doi.org/10.1017/S0007114515002950

Potì, F., Santi, D., Spaggiari, G., Zimetti, F., & Zanotti, I. (2019). (poly)phenols Health Effects on Cardiovascular and Neurodegenerative Disorders: A Review and Meta-Analysis. International journal of molecular sciences, 20(2), 351. https://doi.org/10.3390/ijms20020351

Engin A. (2017). The Definition and Prevalence of Obesity and Metabolic Syndrome. Advances in experimental medicine and biology, 960, 1–17. https://doi.org/10.1007/978-3-319-48382-5_1

Mitjavila, M. T., Fandos, M., Salas-Salvadó, J., Covas, M. I., Borrego, S., Estruch, R., Lamuela-Raventós, R., Corella, D., Martínez-Gonzalez, M. Á., Sánchez, J. M., Bulló, M., Fitó, M., Tormos, C., Cerdá, C., Casillas, R., Moreno, J. J., Iradi, A., Zaragoza, C., Chaves, J., & Sáez, G. T. (2013). The Mediterranean diet improves the systemic lipid and DNA oxidative damage in metabolic syndrome individuals. A randomized, controlled, trial. Clinical nutrition (Edinburgh, Scotland), 32(2), 172–178. https://doi.org/10.1016/j.clnu.2012.08.002

Jabczyk, M., Nowak, J., Hudzik, B., & Zubelewicz-Szkodzińska, B. (2021). Curcumin in Metabolic Health and Disease. Nutrients, 13(12), 4440. https://doi.org/10.3390/nu13124440

Bateni, Z., Rahimi, H. R., Hedayati, M., Afsharian, S., Goudarzi, R., & Sohrab, G. (2021). The effects of nano-curcumin supplementation on glycemic control, blood pressure, lipid profile, and insulin resistance in patients with the metabolic syndrome: A randomized, double-blind clinical trial. Phytotherapy research : PTR, 35(7), 3945–3953. https://doi.org/10.1002/ptr.7109

Wang, S., Liang, X., Yang, Q., Fu, X., Rogers, C. J., Zhu, M., Rodgers, B. D., Jiang, Q., Dodson, M. V., & Du, M. (2015). Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. International journal of obesity (2005), 39(6), 967–976. https://doi.org/10.1038/ijo.2015.23

Alberdi, G., Rodríguez, V. M., Miranda, J., Macarulla, M. T., Arias, N., Andrés-Lacueva, C., & Portillo, M. P. (2011). Changes in white adipose tissue metabolism induced by resveratrol in rats. Nutrition & metabolism, 8(1), 29. https://doi.org/10.1186/1743-7075-8-29

Poulsen, M. M., Vestergaard, P. F., Clasen, B. F., Radko, Y., Christensen, L. P., Stødkilde-Jørgensen, H., Møller, N., Jessen, N., Pedersen, S. B., & Jørgensen, J. O. (2013). High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes, 62(4), 1186–1195. https://doi.org/10.2337/db12-0975

Méndez-del Villar, M., González-Ortiz, M., Martínez-Abundis, E., Pérez-Rubio, K. G., & Lizárraga-Valdez, R. (2014). Effect of resveratrol administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Metabolic syndrome and related disorders, 12(10), 497–501. https://doi.org/10.1089/met.2014.0082

Chaplin, A., Carpéné, C., & Mercader, J. (2018). Resveratrol, Metabolic Syndrome, and Gut Microbiota. Nutrients, 10(11), 1651. https://doi.org/10.3390/nu10111651

Guariguata, L., Whiting, D. R., Hambleton, I., Beagley, J., Linnenkamp, U., & Shaw, J. E. (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes research and clinical practice, 103(2), 137–149. https://doi.org/10.1016/j.diabres.2013.11.002

Sun, Q., Wedick, N. M., Tworoger, S. S., Pan, A., Townsend, M. K., Cassidy, A., Franke, A. A., Rimm, E. B., Hu, F. B., & van Dam, R. M. (2015). Urinary Excretion of Select Dietary (poly)phenols Metabolites Is Associated with a Lower Risk of Type 2 Diabetes in Proximate but Not Remote Follow-Up in a Prospective Investigation in 2 Cohorts of US Women. The Journal of nutrition, 145(6), 1280–1288. https://doi.org/10.3945/jn.114.208736

Song, Y., Manson, J. E., Buring, J. E., Sesso, H. D., & Liu, S. (2005). Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis. Journal of the American College of Nutrition, 24(5), 376–384. https://doi.org/10.1080/07315724.2005.10719488

Scazzocchio, B., Varì, R., Filesi, C., D'Archivio, M., Santangelo, C., Giovannini, C., Iacovelli, A., Silecchia, G., Li Volti, G., Galvano, F., & Masella, R. (2011). Cyanidin-3-O-β-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARγ activity in human omental adipocytes. Diabetes, 60(9), 2234–2244. https://doi.org/10.2337/db10-1461

Kim, Y., Keogh, J. B., & Clifton, P. M. (2016). (poly)phenols and Glycemic Control. Nutrients, 8(1), 17. https://doi.org/10.3390/nu8010017

Hanhineva, K., Törrönen, R., Bondia-Pons, I., Pekkinen, J., Kolehmainen, M., Mykkänen, H., & Poutanen, K. (2010). Impact of dietary polyphenols on carbohydrate metabolism. International journal of molecular sciences, 11(4), 1365–1402. https://doi.org/10.3390/ijms11041365

Wang, X., Tian, J., Jiang, J., Li, L., Ying, X., Tian, H., & Nie, M. (2014). Effects of green tea or green tea extract on insulin sensitivity and glycaemic control in populations at risk of type 2 diabetes mellitus: a systematic review and meta-analysis of randomised controlled trials. Journal of human nutrition and dietetics : the official journal of the British Dietetic Association, 27(5), 501–512. https://doi.org/10.1111/jhn.12181

Zheng, X. X., Xu, Y. L., Li, S. H., Hui, R., Wu, Y. J., & Huang, X. H. (2013). Effects of green tea catechins with or without caffeine on glycemic control in adults: a meta-analysis of randomized controlled trials. The American journal of clinical nutrition, 97(4), 750–762. https://doi.org/10.3945/ajcn.111.032573

Wedick, N. M., Pan, A., Cassidy, A., Rimm, E. B., Sampson, L., Rosner, B., Willett, W., Hu, F. B., Sun, Q., & van Dam, R. M. (2012). Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. The American journal of clinical nutrition, 95(4), 925–933. https://doi.org/10.3945/ajcn.111.028894

Basu, A., Feng, D., Planinic, P., Ebersole, J. L., Lyons, T. J., & Alexander, J. M. (2021). Dietary Blueberry and Soluble Fiber Supplementation Reduces Risk of Gestational Diabetes in Women with Obesity in a Randomized Controlled Trial. The Journal of nutrition, 151(5), 1128–1138. https://doi.org/10.1093/jn/nxaa435

Lindsley, C. W. (2015). 2013 Trends and statistics for prescription medications in the United States: CNS highest ranked and record number of prescriptions dispensed. ACS Chemical Neuroscience, 6(3), 356-357.

Endale, M., Park, S. C., Kim, S., Kim, S. H., Yang, Y., Cho, J. Y., & Rhee, M. H. (2013). Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology, 218(12), 1452–1467. https://doi.org/10.1016/j.imbio.2013.04.019

Ishii, T., Ishikawa, M., Miyoshi, N., Yasunaga, M., Akagawa, M., Uchida, K., & Nakamura, Y. (2009). Catechol type (poly)phenols is a potential modifier of protein sulfhydryls: development and application of a new probe for understanding the dietary (poly)phenols actions. Chemical research in toxicology, 22(10), 1689–1698. https://doi.org/10.1021/tx900148k

Marunaka, Y., Marunaka, R., Sun, H., Yamamoto, T., Kanamura, N., Inui, T., & Taruno, A. (2017). Actions of Quercetin, a (poly)phenol, on Blood Pressure. Molecules (Basel, Switzerland), 22(2), 209. https://doi.org/10.3390/molecules22020209

Edwards, R. L., Lyon, T., Litwin, S. E., Rabovsky, A., Symons, J. D., & Jalili, T. (2007). Quercetin reduces blood pressure in hypertensive subjects. The Journal of nutrition, 137(11), 2405–2411. https://doi.org/10.1093/jn/137.11.2405

Zahedi, M., Ghiasvand, R., Feizi, A., Asgari, G., & Darvish, L. (2013). Does Quercetin Improve Cardiovascular Risk factors and Inflammatory Biomarkers in Women with Type 2 Diabetes: A Double-blind Randomized Controlled Clinical Trial. International journal of preventive medicine, 4(7), 777–785.

Serban, M. C., Sahebkar, A., Zanchetti, A., Mikhailidis, D. P., Howard, G., Antal, D., Andrica, F., Ahmed, A., Aronow, W. S., Muntner, P., Lip, G. Y., Graham, I., Wong, N., Rysz, J., Banach, M., & Lipid and Blood Pressure Meta‐analysis Collaboration (LBPMC) Group (2016). Effects of Quercetin on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of the American Heart Association, 5(7), e002713. https://doi.org/10.1161/JAHA.115.002713

Zhu Y., Xia M., Yang Y., Liu F., Li Z., Hao Y., Mi M., Jin T., Ling W. Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals. Clinical Chemistry, 57(11), 1524–1533, https://doi.org/10.1373/clinchem.2011.167361

Rodriguez-Mateos A., Rendeiro C., Bergillos-Meca T., Tabatabaee S., George T., Heiss C., Spencer J.P. Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: a randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. The American Journal of Clinical Nutrition, 98(5), 1179-1191, https://doi.org/10.3945/ajcn.113.066639

Garcia, C., & Blesso, C. N. (2021). Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free radical biology & medicine, 172, 152–166. https://doi.org/10.1016/j.freeradbiomed.2021.05.040

Ference, B. A., Ginsberg, H. N., Graham, I., Ray, K. K., Packard, C. J., Bruckert, E., ... & Catapano, A. L. (2017). Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. European heart journal, 38(32), 2459-2472.

Pan, B., Yu, B., Ren, H., Willard, B., Pan, L., Zu, L., ... & Zheng, L. (2013). High-density lipoprotein nitration and chlorination catalyzed by myeloperoxidase impair its effect of promoting endothelial repair. Free Radical Biology and Medicine, 60, 272-281.

Downloads

Published

13-11-2023

How to Cite

Hu, Y. (2023). (Poly)phenol-rich food and cardio-metabolic health. Transactions on Materials, Biotechnology and Life Sciences, 1, 89-96. https://doi.org/10.62051/4pt2w058