The Mechanism of Action of Cancer Therapeutic Vaccines and Their Application Prospects

Mingrui Li*

College of Chemistry, Nankai University, Tianjin, 300071, China

* Corresponding Author: 2010122@mail.nankai.edu.cn

Abstract. The complexity of cancer as a global health problem has also led to the development of various novel therapeutics, including prophylactic vaccines. Scientific breakthroughs and technological developments have changed cancer research; since cancer is a complicated disease with many factors, more and better vaccines are required. The research stresses the worldwide influence of cancer and modern therapeutic approaches, such as vaccination. With advances in molecular and cellular biology, cancer therapeutic vaccination studies have been advanced; the discovery of tumor markers and advances in immunology and cancer therapies have changed. In contrast to chemotherapy and radiation, immunotherapy revolutionized treatment. The cancer therapeutic vaccines elicit antigen-specific T cell responses, helper T cell stimulation, and innate immune cells; the research indicates that these vaccines use various means to arouse the body's defensive mechanism against cancer. Complex tools are explained by figures 1 and 2, which depict CD4+ T cells and innate immunity cells. Vaccines can be peptide/protein-based, whole-cell- or nucleic acid-based by application or clinical trial. Each category is looked at for its significant successes, triumphs, and failures: dendritic cell vaccines, the efficiency of antigen presentation, and clinical trial success. Cancer-therapeutic vaccines and immune checkpoint inhibitors are synergistic. Expanding the range of cancer vaccine antigens depends on finding added tumor-associated antigens and immunological checkpoints. However, there are flaws in cancer therapeutic vaccines, despite progress; tumor heterogeneity, immune evasion, and Safety are among concerns today. Recognizing these problems sets the stage for later chapters of optimization and new approaches.

Keywords: Therapeutic vaccines; application prospect; mechanism.

1. Introduction

Advanced knowledge based on such developments as scientific discoveries and technological upgrades forms contemporary cancer research, which has made it challenging to comprehend cancer as a simple disease. Nowadays, cancer has become a health issue globally, necessitating advanced treatment methods [1]. Vaccines as anti-cancer immuno-therapy show prospect. These vaccines enhance the ability of the immune system to detect and remove cancerous cells. Therapeutic vaccines for cancer might prove more potent [2]; therefore, it's fundamental to develop new vaccines to reassess modes of delivering cancer care. This is due to the body's natural defense mechanism, which makes the individualized treatment approach more effective. This essay discusses cancer therapeutic vaccination mechanisms and applications.

Advancements have immensely aided research progress in molecular and cellular biology cancer therapeutic vaccination studies. Therapeutic vaccines are not new, as they have been within for over three decades, such as other forms of cancer immunotherapies [3]. Immunotherapy involves a unique approach compared to traditional treatments like chemotherapy and radiotherapy, whereby a patient's defense mechanisms are used to suppress cancer cells. Some of these recent discoveries include the identification of specific tumor markers and unraveling developments in immunology; these measures have wholly changed the perception of cancer treatments based on the traditional way. The use of precision medicine for tumor treatment using the natural immunity process has been a compelling option among other approaches [4]. Cancer therapies like chemotherapy and radiotherapy are not specific, resulting in collateral damage and long-term efficiency, while cancer cells tend to be resistant. Immune-based treatments also offer cancer immunotherapy vaccines that ensure that
healthy tissue is not harmed in their attempt to fight cancerous cells. The result of this study is the creation of new opportunities for personalized treatment and targeting treatments that may effectively deal with cancer therapeutic difficulties and boost patients' outcomes.

This paper discusses the underlying mechanism of cancer therapeutic vaccine research content that explores the disease comprehensively. It involves initiating antigen-specific T cell reactions, induction of helper T cells, and participation of innate immunity cells. Moreover, this essay describes how various categories of vaccines have been developed for use in clinics. Through the analysis of cancer therapeutic vaccines in this article, it will aim to discover current problems and defects and propose improvement methods to provide more reference methods and theoretical basis for future research.

2. Mechanism of Action
Cancer therapeutic vaccines work through a complex mechanism of action that stimulates the production of the active body's protective system to fight cancer effectively. It is a multidimensional process made up of several constituent elements.

2.1. Activation of Antigen-Specific T Cell Responses
The central action in how cancer therapeutic vaccines work focuses on triggering the cellular immune response against the antigens. These vaccines are designed to serve as stimuli that will induce the immune system to react to a specific tumor-specific antigen. The process activates CD4+ helper T-cells capable of identifying this presenting antigen for lysis [5]. The activation of T cells signifies the critical link of a chain that allows the immune system to distinguish and eliminate cancerous cells with high precision” [6]. Therefore, it is one of the crucial components for successful anti-cancer therapy vaccination (Fig 1).

![Figure 1. CD4+ T Cells: Multitasking Cells in the Duty of Cancer Immunotherapy [7].](image-url)
2.2. Activation of Helper T Cell Responses

Controlled mechanisms, including activation of helper T cells, are essential in this case for optimal use of cancer therapeutic vaccines. They act as activators of cytotoxic T cells that directly kill cancer cells and promote helper T cell responses. These activated helper T cells produce necessary signals that trigger the functioning and multiplication of cytotoxic T-cells and B-cells, thereby strengthening the attack against the cancerous cells [8]. This double stimulation system makes the general immunity stronger, and therefore, this vaccination is successful in the fight against cancer. Such combinatorial cooperation dramatically enhances the performance of modern therapeutic cancer vaccines to generate a concerted immune assault on cancer.

2.3. Stimulation of Innate Immune Cells

Cancer therapy vaccines also work in concert with the activation of adaptive immune systems by activating innate immune cells. Figure 2 depicts a strategic approach that integrates with turning on adaptive immune responses to reinforce the defense of the body from cancer. Dendritic and natural killer cells provide integral parts of the innate immune system, identifying and eliminating cancer cells. Strategic vaccine design will work on stimulating and mobilizing the functions of natural immunity. Cancer therapeutic vaccines work by strengthening one's innate immunity such that it can quickly identify and eliminate these cancerous cells, thus also fortifying the overall immune response against cancer as per Fig. 2. Cancer therapeutic vaccines present an intelligent tactic that activates and fights cancer by engaging both T and B units within human bodies.

Figure 2. Humoral immunity response against cancer [9].

3. Application Progress

Cancer therapeutic vaccines have been the subject of intense investigation and assessment at the clinical trial level, where various levels of advancement and outcomes by different vaccine classes have been established.
3.1. Peptide-based Vaccines

One of the most influential groups is protein-based/peptide-based vaccines, which use cancer-associated peptides and proteins as antigens [10]. Important steps have been taken towards the design and manufacture of various vaccines to use in clinical trials. These trials provided grounds for optimism that they could have boosted immunity and improved patient survival rates. This course can show peptide-and protein-based vaccines and how to design future cancer immunotherapies [10].

3.2. Whole Cell-based Vaccines

Whole-cell therapeutic vaccines use a method by which the substances used as antigens are malignant cells; this comprises dendritic and tumor cell vaccines, which are certainly not alike.

3.2.1. Dendritic cell vaccines

These super-efficient antigen presenters are the basis of dendritic cell vaccines. Ex vivo loaded with the tumor antigens, dendritic cells are reinfused into patients as these vaccines [11]. Based on current evidence, dendritic cell vaccines are immunogenic, and response rates are high. Clinical trials involving dendritic cell vaccines have come up with successful results showing that these vaccine types are indeed capable of inducing the immune response and delivering clinical benefits, making them a candidate for cancer immunotherapy [12].

3.2.2. Tumor cell vaccines

Tumor cell vaccines are based on using a live tumor cell in an altered state [modified or irradiated] to increase its ability to stimulate the immune system. Hence, whole tumor-cell vaccines that encode the cytokine genes such as IL-2, IL-12, and GM-CSF are generated ex-vivo for tumor cells of a particular patient to amplify immune signals [13]. These vaccines seek to induce immune reactions to a set of tumor-associated antigens. Despite showing a prospect in pre-clinical research, their clinical efficacy still needs to be improved due to the requirement for more improvement to be released through their true power in therapy settings.

3.3. Nucleic Acid-based Vaccines

A novel form called nucleic acid-based vaccines is highly innovative in immunotherapy. This category includes vaccines incorporating DNA or mRNA encoding for tumor-associated antigens, offering unique design and manufacturing advantages [14]. As a result of this new strategy, many patients have been recruited into clinical trials with an excellent picture of immune activation, leading to early clinical response.

3.3.1. DNA vaccines

DNA vaccines constitute an essential route for research within the grouping of nucleic acid-based vaccines. These include the direct-injection vaccine, which uses plasmid DNA encoding for tumor antigens. Importantly, DNA vaccines are safe and effective and possess the necessary antigenicity [15]. These DNA vaccines are being explored for their clinical efficacy but still offer hope for future cancer immunotherapy therapy. Direct coding of tumor antigens in DNA presents a specific mechanism that induces immune reaction to cancer cellular elements.

3.3.2. mRNA vaccines

Moreover, mRNA vaccines have emerged with significant success in fighting against Covid-19. The achievement has provoked examination of mRNA vaccines as a fresh strategy for cancer therapeutic vaccines. The results of clinical trials evaluating mRNA vaccines for cancer are positive and indicate that they can evoke immune solid responses against carcinoma cells [16]. This positivity drives the hope that RNA vaccines will be integrated into new immunotherapy methods, leading to a novel view of cancer treatment.
3.3.3. Viral vector-based vaccines
Vaccinal virus vector-based, genetically modified viruses that deliver tumor-associated antigens show promise in a pre-clinical model and clinical trials [17]. The response is that these vaccines can produce immune solid reactions and, hence, can create a synergistic effect when used with other immunotherapies for better outcomes. Viral vector-based vaccines may become essential building blocks for novel developments in anti-cancer vaccination.

4. Defects and Challenges

4.1. Efficacy
A significant hurdle is this inconsistent effectiveness that varies between distinct tumors and among individual patients. Tumor heterogeneity remains a formidable barrier; however, immune evasions by cancer cells alongside an immunosuppressed tumor environment pose additional challenges [17-19]. To address these challenges, research focuses on understanding and overcoming potential determinants of reduced vaccine efficacy. Strategies that consider tumor heterogeneity, immune evasion, and tumor microenvironment may be developed to unlock cancer therapeutic vaccines' true potential.

4.2. Safety
The safety of therapeutic vaccines also needs to be addressed; along these lines, adverse events and immune-related toxicities should be noted in clinical trials and post-therapy [20]. The vaccines should enhance immunity against the cancer cells and reduce side effects. Aspirations regarding research should focus on making vaccines safer and lowering their adverse effects.

4.3. Other Challenges
Two additional impediments are their immune constitution and the requirement of specialized therapy. Finding appropriate tumor-associated antigens for cancer-specific targeting remains a daunting task. Investigations have to continue on the challenging issues surrounding the development of vaccines, including the best vaccine platforms and modes of administration. Seeking individualistic methods recognizes that an individual's tumor print is specific and requires customized techniques to enhance therapeutic results [21].

5. Optimization
Despite its challenges, cancer therapeutic vaccines have inspired researchers to venture into novel optimization tactics toward advancing the field.

5.1. Overcoming Efficacy Challenges
Researchers are undertaking various complex efforts toward overcoming the pertinent issues of effectiveness. Among these potential avenues is the study of combination therapies wherein cancer-therapeutic vaccines are combined with other immune therapeutics, such as immune checkpoint inhibitors or adoptive T-cell therapies [22]. The synergetic approach involves strengthening and multiplying treatment effects by exploiting the complementarities of diverse treatment modalities. In addition, new tumor-relevant antigens are being identified and may, in the future, provide a broader spectrum of antigens for cancer vaccination [23]. Besides, custom-made vaccines specific to patient features, including genomics or immunology profiles, will likely improve vaccine efficiency due to patient backgrounds and tumor variations.
5.2. Improving Safety

A crucial goal in this regard is improving the safety attributes of vaccines used for cancers. Researchers are tirelessly investigating various vaccine design approaches to reduce side effects and enhance therapeutic immune responses directed toward cancer cells [22]. Especially in the area of customized transportation system development for delivery. These systems aim to enhance the specificity of vaccine acceptance, reducing side effects and improving safety. These Safety-related concerns show a well-thought-out attempt to ensure patient health during the treatment of immunotherapies.

5.3. Development of New Targets

Seeking new targets has remained a significant research focus on cancer therapeutic vaccines. While novel tumor-associated antigens and immune checkpoints are being identified and validated by researchers [22] When the target is widened to encompass not a single type of tumor but all classes that use advanced cell-escaping mechanisms against cancer cells, efficacy can be improved. Cancer research is a perpetual process, hoping to discover other new target sites that may be used to create highly effective cancer therapeutic vaccines.

6. Discussion

Cancer therapeutic vaccines would revolutionize the paradigm shifts toward targeted cancer treatment. T cells and other innate immunity effector cells within their bodies employ a multitargeted mechanism aimed at antigen-specific T-cells to enable the body to search out and destroy cancerous tissues [8]. Secondly, cancer therapeutic vaccines enhance immune activation and early clinical outcomes. Clinical trials with broad applications are currently being carried out. Achieving the potential of cancer therapeutic vaccines is far from easy. Efficacy, Safety, and immunological responses need to be deeply disclosed creatively. Tweaking: ensure the maximal effectiveness in each patient and tumor type [17;19]. This is an important step, but safety must balance between spurring immune responses against malignant cells and minimizing adverse effects [20]. This is an important watershed for this type of vaccine, and it requires clarifying the cancer immune landscape to design and apply these vaccines. They are rather complicated, with several different components involved.

The debate over cancer therapeutic vaccines is not limited to problems but also includes solutions. Therefore, combination therapies incorporating vaccines and other immune-therapeutic agents may help improve the effectiveness of treatments. Improving vaccine design, a better safety profile, and adjusting strategies according to patient characteristics could help address those fears of efficiency and security. Improvement in cancer therapeutic vaccine research reveals why interdisciplinary methodological collaboration and persistence to overcome obstacles are required. The current successes and efforts will improve prospects with progress on achieving and refining cancer vaccines. Suppose this can be harnessed correctly as targeted, effective immunotherapy against cancer. In that case, there is hope for a continuance without having to endure such experiences again.

7. Conclusion

In conclusion, cancer therapeutic vaccines will likely involve the immunity system to detect and destroy cancer cells. Innate immunity cells, antigen-specific T cell responses, and helper T cell responses are all triggered by this potential efficacy. Peptide/protein, whole cell, and nucleic acid vaccines yielded promising results in clinical trials and point toward modern times in cancer immunotherapy. Efficacy and safety concerns demand future investigation and enhancements of the promising possibilities. Optimization requires delicacy as there are discrepancies in tumor effectiveness between tumors and patients. To minimize vaccine side effects, there is a need to design a safe therapeutic vaccine. The scientific community is tackling these difficulties by looking at different optimization methodologies and ways of thinking creatively. Combined therapies wherein cancer vaccines are administered alongside other immunotherapies enhance patients’ outcomes.
towards treatment. The progress in vaccination design and target discovery reflects the dedication to overcoming barriers and improving the effectiveness and security of oncologic vaccine therapy.

References


