Preparation and Photocatalytic Properties of Graphite-Phase Carbon Nitride Materials
DOI:
https://doi.org/10.62051/g3z38w88Keywords:
Graphite-Phase Carbon Nitride; Heterojunction; Photocatalytic Hydrogen Production; Photocatalytic Degradation; Antibacterial.Abstract
As a new semiconductor material, graphite-phase carbon nitride can be effectively used in the utilization of renewable energy and environmental pollution control. Because the preparation of graphite-phase carbon nitride is complicated with different optimization strategies in various industrial fields, the preparation and modification of graphite-phase carbon nitride are summarized in this paper. Combined with the excellent performance of graphite-phase carbon nitride in the band gap, specific surface area and stability, the research status of its modified materials in the photocatalytic hydrogen production, degradation of organic pollutants and antibacterial is analyzed. Finally, the future development trend of graphite-phase carbon nitride materials is prospected.
Downloads
References
Wang, C., Jie, Q, D., Bo, Y. Q. et al. (2023). Preparation of mesoporous g-C3N4 materials with a large specific surface area and their hydrogen production performance. Journal of Zhejiang Sci-Tech University (Natural Science), 49(06), 665-673.
Liu, X. W. (2024). Research on the structure-activity relationship of visible light-promoted Pt(II) complex and modified graphite phase carbon nitride in bactericidal. Yangzhou: Master’s Dissertation of Yangzhou University. DOI:10.27441/d.cnki.gyzdu.2023.001984.
Yin, W. H., Zhang, Y. C., Guo, Y. J. et al. (2024). Research progress of deflect regulation of g-C3N4 degradation of organic dyes. New Chemical Materials, 1-9. https://doi.org/10.19817/j.cnki.issn1006-3536.2024.08.005.
He, Y. P., Yao, W. W., Zhou, Z. B. et al. (2023). Preparation of graphite-phase carbon nitride and photocatalytic performance. Modern Chemical Research, (15), 162-164. DOI:10.20087/j.cnki.1672-8114.2023.15.054.
Zheng, Y., Wang, B. & Wang, X. C. (2015). Graphitic carbon nitride nanotubes: Synthesis and photocatalytic activity for hydrogen evolution. Image Science and Photochemistry, 33(05): 417-425.
Mu, C. L., Liu, C. Y., Cui, X. F. et al. (2021). Recent advance on antibacterial property of g-C3N4 based nanocomposite. New Chemical Materials, 49(11): 63-67+78. DOI:10.19817/j.cnki.issn1006-3536.2021.11.014.
Wang, X. Q. (2017). Pd nanoparticles supported on C3N4 as an efficient and reusable catalyst for heck reaction under ligand-free condition. Hefei: Master’s Dissertation of Heifei University of Technology.
Bai, S. Z., Liu, J. H., Kang, D. W. et al. (2021). Research on solid phase synthesis of graphite phase carbon nitride materials and electrochemical energy storage. Journal of Inner Mongolia Minzu University (Natural Science), 36(01), 1-6. DOI:10.14045/j.cnki.15-1220.2021.01.001.
Xiong, X. J. & Li, J. M. (2023). Preparation of graphite phase carbon nitride photocatalyst and research on degradation of methylene blue. Chemical Production and Technology, 29(03), 17-20+8.
Duan, X. Y., Xu, J. H., He, M. Q. et al. (2021). Preparation and photocatalytic performance of two-dimensional graphite phase carbon nitride nanosheets. Fine Chemicals, 38(01), 83-90. DOI:10.13550/j.jxhg.20200652.
Gao, X. C., Dai, H. Z., Zhang, J. X. et al. (2017). Comparative study on the synthesis of graphite carbon nitride by microwave method and hydrothermal method. Chemical and Bioengineering, 34(08): 31-36.
Wang, D. B., Huang, X. Q., Huang, Y. Y., Xin, L., Ye, D., Su, X. Y. & Zelin. (2021). Self-assembly synthesis of petal-like Cl-doped g-C3N4 nanosheets with tunable band structure for enhanced photocatalytic activity. Colloids and Surfaces, A. Physicochemical and Engineering Aspects, 611(1).
Wang, S. Q., Liu, S. L., Bu, Y. F. et al. (2023). Preparation, characterization and photocatalytic performance of graphite phase carbon nitride. Progress in Fine Petrochemical Industry, 24(02), 21-24+30. DOI:10.13534/j.cnki.32-1601/te.2023.02. 012.
Ren, C. Y., Lin, X. Y., Wang, Z. M. et al. (2023). Preparation of porous graphite phase carbon nitride and visible light catalytic lignin conversion. Forest Chemistry and Industry, 43(02), 116-126.
Li, C., Cao, C. B. & Zhu, H. S. (2003). Preparation of graphite-like carbon nitride by electrochemical deposition. Scientific Bulletin, (09), 905-908.
Cao, S. B., Jiao, Z., Chen, H. et al. (2018). Carboxylic acid-functionalized cadmium sulfide/graphitic carbon nitride composite photocatalyst with well-combined interface for sulfamethazine degradation. Journal of Photochemistry and Photobiology A: Chemistry. DOI:10.1016/j.jphotochem.2018.05.030.
Yang, B. (2023). Structural regulation and photocatalytic performance of ultra-thin graphite phase carbon nitride. Shihezi: Master’s Dissertation of Shihezi University. DOI:10.27332/d.cnki.gshzu.2022.000026.
Meng, J., Wang, X., Liu Y. et al. (2020). Acid-induced molecule self-assembly synthesis of Z-scheme WO3/g-C3N4 heterojunctions for robust photocatalysis against phenolic pollutants-ScienceDirect. Chemical Engineering Journal, 403. DOI:10.1016/ j.cej.2020.126354.
Chen, W., Liu, M., Li, X. et al. (2020). Synthesis of 3D mesoporous g-C3N4 for efficient overall water splitting under a Z-scheme photocatalytic system. Applied Surface Science, 512:145782.DOI:10.1016/j.apsusc.2020.145782.
Bai, Y. H., Chen, M. Y. & Liu, Y. C. (2021). Research progress on morphology regulation and modification of graphite phase carbon nitride photocatalyst. Environmental Science and Technology, 44(05), 34-40. DOI:10.19672/j.cnki. 1003-6504.2021.05.005.
Mao, D. X. (2020). Preparation and photocatalytic performance of graphite phase carbon nitride heterogeneous materials. Suzhou: Master’s Dissertation of Suzhou University of Science and Technology.
Zhang, M., Sun, Y., Chang, X. et al. (2021). Template-free synthesis of one-dimensional g-C3N4 chain nanostructures for efficient photocatalytic hydrogen evolution. Frontiers in Chemistry, 9:652762.DOI:10.3389/fchem.2021.652762.
Wang, X. (2023). Research on controllable construction of carbon nitride heterojunction and photocatalytic hydrogen production performance. Beijing: Master’s Dissertation of University of Science and Technology. DOI:10.26945/d.cnki. gbjku.2022.000401.
Zhu, Y. J. et al. ZnO/Cu2O/g-C3N4 heterojunctions with enhanced photocatalytic activity for removal of hazardous antibiotics Heliyon, 8(12), e12644.
Liang, H. Y., Li, J. Z., Tian, Y. W. et al. (2018). Preparation of different g-C3N4 /WO3 heterojunction materials and their photocatalytic properties. Journal of Petrochemical University, 31(01): 23-29.
Zhang, F. (2021). Modification of graphite phase carbon nitride and research on its photocatalytic hydrogen production performance. Hefei: Master’s Dissertation of University of Science and Technology of China. DOI: 10.27517/D.cnki.gzkju.2021. 000277.
Yang, X. F. (2022). Preparation and photocatalytic properties of graphite phase carbon nitride matrix composites. Jilin: Master’s Dissertation of Jilin University. DOI:10.27162/d.cnki.gjlin.2021.000532.
Li, H., Zhang, N., Zhao, F. et al. (2020). Facile fabrication of a novel Au/phosphorus-doped g-C3N4 photocatalyst with excellent visible light photocatalytic activity. Catalysts, 10(6), 701. DOI:10.3390/catal10060701.
Iqbal, N., Khan, M. S., Zubair, M., Khan, S. A., Ali, A. et al. (2022). Advanced photoelectrochemical hydrogen generation by CdO-g-C3N4 in aqueous medium under visible light. Molecules, 27, 8646.
Chen, Y., Li, A., Fu, X. & Peng, Z. (2022). One-step calcination to gain exfoliated g-C3N4/MoO2 composites for high-performance photocatalytic hydrogen evolution. Molecules, 27, 7178.
Jiang, L. B., Yuan, X. Z., Liang, G. M., Wu, J. et al. (2019). Nitrogen self-doped g-C3N4 nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation. Journal of Colloid and Interface Science, 536.
Prabakaran, E., Velempini, T., Molefe, M. et al. (2021). Comparative study of KF, KCl and KBr doped with graphitic carbon nitride for superior photocatalytic degradation of methylene blue under visible light-science direct. Journal of Materials Research and Technology.
Liu, X., Tang, R. Y., Xia, X. M. et al. (2020). The study of visible-light photocatalytic degradation activity of Ag doped g-C3N4 obtained by heating process. Materials Research Express, 7(11), 115904(11pp). DOI:10.1088/2053-1591/abca69.
Maavia, A., Aslam, I., Tanveer, M. et al. (2019). Facile synthesis of g-C3N4 /CdWO4 with excellent photocatalytic performance for the degradation of minocycline. Materials Science for Energy Technologies. DOI:10.1016/j.mset. 2019.01.004.
Huang, Q. (2023). Preparation and properties of graphite phase carbon nitride copper-carried antibacterial fiber. Hangzhou: Master’s Dissertation of Zhejiang Sci-Tech University. DOI:10.27786/d.cnki.gzjlg.2022.000835.
Baig, U., AbuMousa, R., Ansari, M., Gondal, M. & Dastageer, M. (2022). Pulsed laser-assisted synthesis of nano nickel(ii) oxide-anchored graphitic carbon nitride: Characterizations and their potential antibacterial/anti-biofilm applications. Nanotechnology Reviews, 11(1), 3053-3062.
Zhang, Y., Su, S., Zhang, Y. et al. (2021). Visible-light-driven photocatalytic water disinfection toward escherichia coli by nanowired g-C3N4 film. DOI:10.3389/fnano.2021.684788.
Downloads
Published
Conference Proceedings Volume
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.