Probing Inflation Through Cosmic Microwave Background (CMB): Current Evidence and Future Prospects

Authors

  • Weixuan Feng

DOI:

https://doi.org/10.62051/0n3a2c71

Keywords:

Cosmology; Cosmic Microwave Background; Big Bang theory; Inflation Model.

Abstract

The basic concepts of the Big Bang theory and the inflation theory are introduced in this paper. Besides, this paper concludes the current research on modern cosmology, especially for the Big Bang theory and the inflation model. In addition, some current and future Cosmic Microwave Background (CMB) experiments are also summarised. In the final part, some new unsolved problems and interdisciplinary connections in modern cosmology related to the Big Bang theory and the inflation model are mentioned.

Downloads

Download data is not yet available.

References

[1] National Aeronautics and Space Administration.

[2] Fulvio Melia, A resolution of the monopole problem in the R h = c t Universe.

[3] Modern Cosmology (Scott Dodelson, 2003) P1.

[4] Guth, A. H. (1981). The inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D, 23 (2), 347.

[5] Mukhanov, V. F., & Chibisov, G. V. (1981). Quantum Fluctuations and a Nonsingular Universe. JETP Lett, 33, 532-535.

[6] Rubakov, V. A., Sazhin, M. V., & Veryaskin, A. V. (1982). Graviton creation in the inflationary universe and the grand unification scale. Physics Letters B, 115 (3), 189-192.

[7] Smoot, G. F., et al. (COBE Collaboration). (1992). Structure in the COBE differential microwave radiometer first-year maps. Astrophysical Journal, 396, L1-L5.

[8] Hu, W., & Dodelson, S. (2002). Cosmic microwave background anisotropies. Annual Review of Astronomy and Astrophysics, 40 (1), 171-216.

[9] Boggess, N. W., et al. (1992). The COBE mission: Its design and performance two years after launch. Astrophysical Journal, 397, 420.

[10] Planck Collaboration. (2020). Planck 2018 results. X. Constraints on inflation. Astronomy & Astrophysics, 641, A10.

[11] Hu, W., & Dodelson, S. (2002). Cosmic microwave background anisotropies. Annual Review of Astronomy and Astrophysics, 40 (1), 171-216.

[12] Spergel, D. N., et al. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. The Astrophysical Journal Supplement Series, 148 (1), 175.

[13] Kamionkowski, M., Kosowsky, A., & Stebbins, A. (1997). A probe of primordial gravity waves and vorticity. Physical Review Letters, 78 (11), 2058.

[14] Zaldarriaga, M., & Seljak, U. (1997). All-sky analysis of polarization in the cosmic microwave background. Physical Review D, 55 (4), 1830.

[15] Seljak, U., & Zaldarriaga, M. (1997). Signature of gravity waves in the polarization of the microwave background. Physical Review Letters, 78 (11), 2054.

[16] Abazajian, K. N., et al. (Simons Observatory Collaboration). (2016). The Simons Observatory: Science goals and forecasts. arXiv:1610.02743.

[17] Hazumi, M., et al. (LiteBIRD Collaboration). (2019). LiteBIRD satellite: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization. Journal of Low Temperature Physics, 194 (5), 443-452.

[18] Abazajian, K. N., et al. (Simons Observatory Collaboration). (2016). The Simons Observatory: Science goals and forecasts. arXiv:1610.02743.

[19] Hazumi, M., et al. (LiteBIRD Collaboration). (2019). LiteBIRD satellite: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization. In Journal of Low Temperature Physics (Vol. 194, Issues 5-6, pp. 443-452). Springer Science and Business Media LLC.

[20] Planck Collaboration. (2020). Planck 2018 results. I. Overview and the cosmological legacy of Planck. Astronomy & Astrophysics, 641, A1.

[21] CMB-S4 Collaboration. (2016). CMB-S4 Science Book, First Edition. arXiv:1610.02743.

[22] Berera, A. (1995). Warm inflation. Physical Review Letters, 75 (18), 3218.

[23] Bartrum, S., Bastero-Gil, M., Berera, A., Cerezo, R., Ramos, R. O., & Rosa, J. G. (2014). The importance of being warm (during inflation). Physics Letters B, 732, 116-121.

[24] McAllister, L., & Silverstein, E. (2008). String cosmology: A review. General Relativity and Gravitation, 40 (2), 565-605.

[25] Conlon, J. P. (2006). The QCD axion and moduli stabilisation. Journal of High Energy Physics, 2006 (05), 078.

[26] Planck Collaboration. (2020). Planck 2018 results. I. Overview and the cosmological legacy of Planck. Astronomy & Astrophysics, 641, A1.

[27] Planck Collaboration. (2020). Planck 2018 results. V. CMB maps. Astronomy & Astrophysics, 641, A5.

[28] Suzuki, A., et al. (LiteBIRD Collaboration). (2018). The LiteBIRD Satellite Mission: Sub-kelvin Instrument. Journal of Low Temperature Physics, 193 (5), 1048-1056.

[29] Bobin, J., Starck, J. L., Sureau, F., & Basak, S. (2013). Morphological component analysis and inpainting on the sphere: Application in physics and astrophysics. Journal of Fourier Analysis and Applications, 19 (5), 878-900.

[30] Baumann, D., & McAllister, L. (2015). Inflation and String Theory. Cambridge University Press.

[31] Linde, A. (2005). Particle physics and inflationary cosmology. Contemporary concepts in physics, 5, 1-362.

[32] Goldwirth, D. S., & Piran, T. (1992). Initial conditions for inflation. Physics Reports, 214 (4), 223-291.

[33] Cirelli, M. (2012). Indirect Searches for Dark Matter: a Review. Pramana, 79 (5), 1021-1043.

[34] Fields, B. D., Molaro, P., & Sarkar, S. (2014). Big-Bang nucleosynthesis: Connecting inner space and outer space. Frontiers of Physics, 9 (6), 690-719.

[35] Clifton, T., Ferreira, P. G., Padilla, A., & Skordis, C. (2012). Modified gravity and cosmology. Physics Reports, 513 (1-3), 1-189.

Downloads

Published

25-11-2024

How to Cite

Feng, W. (2024) “Probing Inflation Through Cosmic Microwave Background (CMB): Current Evidence and Future Prospects”, Transactions on Computer Science and Intelligent Systems Research, 7, pp. 575–581. doi:10.62051/0n3a2c71.