Research on The Application of High-Performance Calculation in Real-Time Estimation Algorithm of Polarization Parameters of Conformal Arrays
DOI:
https://doi.org/10.62051/0psva180Keywords:
conformal arrays; high-performance calculation; polarization parameters; real-time estimation; Parallel computing; distributed computing.Abstract
In this paper, the application of high-performance computing technology in real-time polarization parameter estimation algorithm of conformal array is discussed, aiming at solving the problems of high computational complexity and poor real-time performance in traditional polarization parameter estimation methods. By introducing parallel computing and distributed computing technology, a new real-time polarization parameter estimation algorithm framework is proposed, which can significantly improve the calculation speed and data processing ability and meet the requirements of modern wireless communication systems for high-speed and accurate signal processing. The experimental results show that compared with the traditional algorithm, the time required by the proposed algorithm in this study is obviously reduced when processing the same amount of data, and it also shows significant advantages in accuracy. In addition, the algorithm shows good applicability and robustness in different scenarios, which provides an efficient and reliable solution for real-time estimation of polarization parameters of conformal array antennas.
Downloads
References
[1] Sun, D., Ma, C., & Mei, J. (2019). The deconvolved conventional beamforming for conformal array. The Journal of the Acoustical Society of America, 146(4), 3090. DOI: https://doi.org/10.1121/1.5137738
[2] Lei, J., Yang, J., Chen, X., Zhang, Z., & Hao, Y. (2018). Experimental demonstration of conformal phased array antenna via transformation optics. Scientific Reports, 8(1), 3807. DOI: https://doi.org/10.1038/s41598-018-22165-4
[3] Zhang, X., Liao, G., Yang, Z., Zou, X., & Chen, Y. (2020). Effective mutual coupling estimation and calibration for conformal arrays based on pattern perturbation. IET Microwaves, Antennas & Propagation, 14(15), 1998-2006. DOI: https://doi.org/10.1049/iet-map.2019.0750
[4] Negi, D., Khanna, R., & Kaur, J. (2021). Broadband gain enhancement of an uwb antenna using conformal wideband nri metamaterial. Frequenz, 75(3-4), 117-134. DOI: https://doi.org/10.1515/freq-2020-0089
[5] Dai, T. K. V., Nguyen, T., & Kilic, O. (2018). A non-focal rotman lens design to support cylindrically conformal array antenna. Applied Computational Electromagnetics Society journal, 33(2), 240-243.
[6] Albagory, Y. (2021). An efficient conformal stacked antenna array design and 3d-beamforming for uav and space vehicle communications. Sensors, 21(4), 1362. DOI: https://doi.org/10.3390/s21041362
[7] Abishek, E., Subramaniam, R., Ramanujam, P., & Esakkimuthu, M. (2023). Low-profile circularly polarized conformal antenna array with side lobe suppression for vehicular satcom applications. Applied Computational Electromagnetics Society journal, 38(6), 439-447. DOI: https://doi.org/10.13052/2023.ACES.J.380608
[8] Chen, C., Zhong, J., & Tan, Y. (2019). Broadband conformal end-fire monopole log-periodic antenna array. Applied Computational Electromagnetics Society journal, 34(12), 1845-1850.
[9] Xin, L., Cao, K., & Yang, X. (2018). Two-layer stacked microstrip cylindrical conformal antenna array with cross snowflake fractal patches. Microwave Journal, 61(3), 88-98.
[10] Abdelhakam, M. M., Elmesalawy, M. M., Mahmoud, K. R., & Ibrahim, I. I. (2018). Efficient wmmse beamforming for 5g mmwave cellular networks exploiting the effect of antenna array geometries. IET Communications, 12(2), 169-178. DOI: https://doi.org/10.1049/iet-com.2016.1471
Downloads
Published
Conference Proceedings Volume
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.