

Research on Risk Assessment and Underwriting Decision Making **Based on ARIMA Model**

Guanyu Liu*

Department of Economics, University of Macau, Macao Special Administrative Region, China, 519000

* Corresponding author: tonyliugy011@gmail.com

Abstract. Addressing the critical challenge of extreme weather events, this study introduces a comprehensive model for enhancing insurance underwriting strategies through predictive analytics and risk assessment methodologies. Utilizing an integrated approach that combines Autoregressive Integrated Moving Average (ARIMA) for forecasting extreme weather occurrences, Fuzzy Comprehensive Evaluation for assessing regional payment capabilities, and Monte Carlo simulations for detailed risk quantification, the re-search aims to refine the insurance industry's capacity for anticipating and mitigating financial losses. A systematic clustering analysis further segments regions based on their risk profiles, allowing for tailored insurance premium settings and underwriting decisions. Findings from the application of this model across diverse geographical areas underscore the potential for significantly im-proved risk management and economic resilience in the insurance sector. Through detailed statistical analysis and predictive modeling, the study demonstrates the importance of advanced analytical frameworks in adapting to the evolving dynamics of climate risk.

Keywords: Risk Assessment Model; ARIMA Forecasting; Fuzzy Comprehensive Evaluation; Monte Carlo Simulation; System Clustering.

1. Introduction

In recent years, the escalation of extreme weather events has posed unprecedented challenges to the insurance industry, necessitating the development of robust risk assessment models to sustain financial stability and resilience. Academics have studied the pricing of property insurance, such as Guo and Gao have used ENN and ERF models to price rice insurance in Yunnan Province, China, and Tao has assessed and priced the risk of agricultural insurance; there have also been studies on extreme weather, such as Wang, Xia & Ren have proposed methods for predicting extreme weather, like using Observing System Simulation Experiments (OSSE), fitted with Gumbel distribution, Weibull distribution, normal distribution [1-4]. However, previous studies lacked models for assessing extreme weather risks and deciding whether insurance companies would underwrite them. The intricacy of forecasting these events and their financial repercussions requires an integrative approach that not only anticipates the occurrence of such events but also evaluates their potential impact on insurance underwriting and premium pricing. This paper delves into the construction of a comprehensive model that leverages Autoregressive Integrated Moving Average (ARIMA) forecasting, Fuzzy Comprehensive Evaluation for payment capacity analysis, and Monte Carlo simulations for risk quantification. By systematically clustering regions based on their vulnerability to extreme weather events, this study proposes a nuanced strategy for insurance companies to adjust their underwriting practices and premium settings, thereby enhancing their adaptability and economic resilience in the face of climate change. Through the lens of this research, we aim to bridge the gap between predictive analytics and practical underwriting decisions, offering a novel perspective on climate-related risks in the insurance sector (data from https://www1.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/).

2. Insurance integrated modelling methodology

2.1. Forecasting natural disaster frequency and loss with ARIMA model

Drawing upon the Li et al. (2023)'s insurance pricing approach and model, the paper establishes a connection between the spot and futures markets by considering the risk-free interest rate (RF), employing an "insurance + futures" model as the pricing mechanism [5]. This involves converting the expected loss (L) due to natural disasters in a country into its present value with time(t). This value is then multiplied by the ratio of a region's population (e) to the total population (E), which in turn is multiplied by the penetration rate (F_1) of insurance purchases among residents of each region. The product is further multiplied by the probability of insurance payouts, calculated as the probability of natural disasters occurring (P(x)) divided by the frequency of such events within a year (r), to finally derive the insurance pricing (P). (Note: The penetration rate F_1 refers to the penetration rate of prior insurance purchases, allowing insurance companies to set prices based on historical penetration rates.)

$$P = \frac{L}{(1+RF)^t} \cdot \frac{e}{E} \cdot F_1 \cdot \frac{P(x)}{r} \tag{1}$$

To calculate the total revenue (TR) of an insurance company within a region, it is equal to the product of the insurance pricing in that region and the number of insurances sold (Q) there. The number of insurances sold in a region is calculated as the product of the region's population (e) and the penetration rate (F_2) . (Note: The penetration rate F_2) refers to the current penetration rate or the penetration rate for the current year, serving as a measure of the present time. F_1 and F_2 have the same meaning but are applied on different temporal scales.)

Similarly, the maximum amount an insurance company might pay out in a region, assumed as the total variable cost (TC), is calculated as the expected loss (L) due to natural disasters in the country multiplied by a proportional coefficient, representing the expected loss in a region, further multiplied by the probability of natural disasters occurring. Economists believe that rational individuals, when making decisions, do not consider sunk costs, meaning costs such as rent and wages are disregarded. Therefore, the economic profit (g) is equal to the total revenue (TR) minus the total variable costs (TC).

$$TR = P \cdot Q \tag{2}$$

$$Q = F_2 \cdot e \tag{3}$$

$$TC = \frac{e}{E} \cdot L \cdot P(x) \tag{4}$$

$$g = TR - TC \tag{5}$$

The principle of ARIMA (p, d, q) involves transforming a non-stationary time series into a stationary one, where the dependent variable is modeled based on its own lagged values as well as the current and lagged values of the random error term [6].

(1) The autoregressive model (AR) describes the relationship between current values and their historical values, using the variable's own historical data to predict its future values. The formula for a p-th order autoregressive process is given by:

$$y_t = \mu + \sum_{i=1}^p \gamma_i \, y_{t-i} + \varepsilon_t \tag{6}$$

In the formula: y_t represents the current value; y_{t-i} denotes the value from i days prior; μ is the constant term; p is the order; γ_i are the coefficients for the *i*th autoregressive term; ε_t is the error term for the current value [7].

- (2) Differencing process (I): This refers to the process of subtracting the lagged value from the current value of a time series, typically employed in a first-order differencing process to achieve stationarity in the original data series. The order of differencing here corresponds to the value of model parameter d, which is commonly set to 1.
- (3) Moving Average Model (MA): The moving average model focuses on the aggregation of error terms from the autoregressive model. The formula for a q-th order moving average process is:

$$y_t = \mu + \sum_{i=1}^q \theta_i \varepsilon_{t-i} + \varepsilon_t \tag{7}$$

In the formula: θ_i are the error coefficients of the i-th moving average term; ε_{t-i} is the error of the value from i periods ago.

(4) The Autoregressive Integrated Moving Average model (ARIMA)combines the autoregressive, differencing process, and moving average components, with the formula being:

$$y_t = \mu + \sum_{i=1}^p \gamma_i \, y_{t-i} + \varepsilon_t + \sum_{i=1}^q \theta_i \varepsilon_{t-i}$$
 (8)

2.2. Evaluating payment capacity: A fuzzy comprehensive approach

To measure the quantity of policies, it's easy to think of a positive correlation between the number of policies and a client's ability to pay for them. Therefore, the paper considers its three personal income, personal consumption, and family debt rate aspects of solvency to form the indicator Q. Then we establish the initial fuzzy composite judgment matrix [8].

$$R = \left(a_{ij}\right)_{3*n} \tag{9}$$

The a_{ij} indicates affiliation of the i^{th} indicator to the j^{th} program. The membership function can help us determine the score of a_{ij} , the function is shown below:

$$A(x) = \begin{cases} 1, x < a \\ \frac{b-x}{b-a}, a \le x \le b \\ 0, x > b \end{cases}$$
 (10)

$$B(x) = \begin{cases} 0, x < a \\ \frac{x - a}{b - a}, a \le x \le b \\ 1, x > b \end{cases}$$
 (11)

The function A(x) measures a small-scale fuzzy function, which in this context assesses the family debt rate. Conversely, B(x) measures a large-scale fuzzy function, focusing on personal income and personal consumption.

Then, based on the weight of the three indicators, the paper obtains a fuzzy vector:

$$C = [\alpha, \beta, \theta] \tag{12}$$

Finally, the paper gets a comprehensive evaluation outcome. H represents a fuzzy vector, where each element corresponds to the degree of membership of the evaluated object to the evaluative the statement j [9].

$$H = C \cdot R \tag{13}$$

2.3. Measuring the number of policies through multiple linear regression

Referring to the Liu & Jiang (2024)'s thoughts, to measure the relationship between the number of policies Q and pricing P and the ability to pay H, the insurance model needs to develop a multiple linear regression model for Q with the following equation [10]:

$$Q = \beta_0 + \beta_1 H + \beta_2 P \tag{14}$$

Using this model, it is possible to find out the relationship between the number of policies Q and pricing P and the ability to pay H. Regarding the goodness of fit and adjusted goodness of fit, the more independent variables we introduce, the better the goodness of fit becomes. However, the paper tends to use the adjusted goodness of fit, which decreases instead if the newly introduced independent variables reduce the SSE by a particularly small amount.

$$R^2 = 1 - \frac{SSE}{SST} \tag{15}$$

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
 (16)

$$R_{ad}^2 = 1 - \frac{SSE/(n-k-1)}{SST/(n-1)} \tag{17}$$

To study more precisely the important factors affecting the evaluation quantity (removing the influence of the scale), the paper considers using standardized regression coefficients.

To standardize the data, the original data is subtracted from its mean and then divided by the standard deviation of the change to calculate the value of the new variable, the regression equation formed by the new variable is called the standardized regression equation, and the standardized regression coefficient can be obtained accordingly after the regression.

However, cross-sectional data are prone to heteroskedasticity problems, which is when the paper uses the optimization methods of OLS and robust standard errors.

The hypothesis test for heteroskedasticity is as follows:

Assume the regression function is: $Q = B_0 + B_1 + B_2$, test the following original hypnosis:

$$H_0: E\left(\varepsilon_i^2 \middle| H, P\right) = \sigma^2 \tag{18}$$

If H_0 is not valid, then the conditional variance $E(\varepsilon_i^2|H,P)$ is the function of (H,P), called "Conditional variance function". The BP test assumes that this conditional variance function is linear:

$$\varepsilon_i^2 = \delta_1 + \delta_2 x_{i_2} + \delta_3 x_{i_3} + u_i \tag{19}$$

If the heteroskedasticity is related to only some of the explanatory variables, only some of the explanatory variables can be used. Other variables can also be added, such as the fitted value \hat{y} , or variables not in the regression equation z. According to the equation (previous one), the original hypothesis simplifies to:

$$H_0: \delta_2 = \delta_3 = 0 \tag{20}$$

Since the perturbation term ε_i is not observable, so the residual square is used to perform an auxiliary regression on the explanatory variables:

$$e_i^2 = \delta_i + \delta_2 H + \delta_3 P + error \tag{21}$$

Still using nR^2 :

$$nR^2 \to \chi^2(k-1) \tag{22}$$

Where R^2 is the auxiliary regression of R^2 . The difference between the BP test and White's test is that the latter also includes a squared term and a cross term. Therefore, the BP test can be viewed as a special column of White's test. The advantage of the BP test is that it is constructive, it can help to identify the specific form of heteroscedasticity.

2.4. Quantifying Risk (Monte Carlo Model)

From the ARIMA model, the frequency of natural disasters(r) can be obtained, and the probability of natural disasters occurring in each year can be calculated using the following formula: Drawing on the Li et al. (2023)'s ideas, the probability obtained by averaging the frequencies over the next three years (p) ensures that the probabilistic predictions are robust and reduce volatility [11]:

$$p = (r_1 + r_2 + r_3)/(365 * 3) \tag{23}$$

Since risk is defined as the uncertainty of deviation from expected returns or expected outcomes, according to Sun (2023) the paper quantifies the risk by modelling the uncertainty on the probabilities we derived through Monte Carlo methods as follows [12]:

The paper defines p' as the uncertainty through the Monte Carlo method in the [p - p', p + p'].

Select N random values within the interval, and subsequently incorporate these N probability values into the profit assessment model to derive N "uncertain" profits. Recalling our definition that risk is the uncertainty of deviation from expected returns, the paper characterizes risk as the variance of the values of these N probabilities [11], as follows:

$$R = \sigma(C_1, C_2, C_3 \dots C_N) \tag{24}$$

2.5. Coverage decision through systematic clustering

The paper modeled the question of whether or not coverage is covered as a question with two types of output values, true and false. The data in the dataset is categorized by combining similar objects using a systematic clustering model. Referring to Tian et al. (2023)'s mind, the paper hopes to determine whether to cover the risk based on the output by categorizing the insurance objects on their own terms [13].

3. Data analysis: the United States as an example

First, this paper assesses the ability to pay (H) of U.S. residents to facilitate the paper's subsequent regression on the number of policies (Q). Here, this paper assesses the ability to pay of U.S. residents. A fuzzy composite evaluation model was used for the 50 U.S. states.

Create an affiliation function for three factors: revenue, consumption, and household debt-to-income ratio for U.S. residents:

Based on research, the top 25% of consumers in the United States have a monthly expenditure of \$2,600, while the bottom 25% spend \$1,500 per month, hence the membership function for consumption has parameters a = 1,500 and b = 2,600 (see Equation (11)). Similarly, the annual income for the upper-middle-income group in the United States is \$90,000, whereas it is \$40,000 for the lower-middle-income group, resulting in the membership function for income with parameters a = 40,000 and b = 90,000 (see Equation (11)). The high debt-to-income ratio for US residents is 1.8, with a low ratio at 1, thus in the membership function for the debt-to-income ratio, a = 1 and b = 1.8 (see Equation (10)).

After determining the affiliation function, referring to Gao (2023), the paper collects the average monthly income (in dollar) ^[14], the average annual consumption (in dollar), and the average debt-to-income ratio of the residents of the 50 states in 2021, and then the calculations of equations (9)-(13) can be used to obtain the ability to pay (H) of the residents of the 50 states, utilizing jupyter notebook, as shown in Table 1.

Subsequently, by gathering data on the frequency (r), loss (L), and penetration rates (F_1) of extreme weather natural disasters in the United States from 1980 to 2021, predictions for the frequency and resultant losses of extreme natural disasters from 2022 to 2030 can be made using equations (1)-(8), as illustrated in Figures 1 and 2. Insurance companies can then price property insurance premiums for a region, calculate the expected number of policies (Q), total revenue (TR), and total variable costs (TC) for a region, ultimately determining the expected profit (g) and deciding whether to underwrite insurance in that area.

Insurance companies can subsequently set the pricing for property insurance premiums within a region. By designating the number of policies (Q) as the dependent variable, and both the payment capacity (H) and the insurance premiums (P) as independent variables, multivariate linear regression is applied to historical data across varying time and regional scales through Equations (14)-(21), utilizing Stata software with results illustrated in Figure 3.It can be seen that the R- squared is 0.8312, which indicates that the correlation between P and H and Q is good and the P- value is almost zero, which indicates that the regression is significant. The final function is $Q = 28.17279P + 216243H + \beta_0$. Incorporating the payment ability derived from fuzzy comprehensive evaluation and insurance premium pricing forecasted by the ARIMA model enables the prediction of the number of policies an insurance company can sell in different regions in the forthcoming years. This allows for the calculation of the total revenue (TR) and total variable costs (TC) for a region, ultimately facilitating the determination of the expected profit (g) and assessing the feasibility of underwriting insurance in that area, as shown in Table 1.

For this simulation, the paper took N=200, p'=0.02, and performed a Monte Carlo simulation, using equations (22) and (23), which gave us 50 sets of variances, which is the value of the risk of the insurance company's expected profits ^[11]. Finally, utilizing a systematic clustering model (with k=5 in this example), if an insurance company has a high-risk tolerance, it can opt to underwrite insurance in regions within categories 3, 4, and 5 where g is greater than zero. Conversely, if the company has a low risk tolerance, it can choose to underwrite insurance in regions within categories 1 and 2 where g is greater than zero. Results obtained using SPSS software are presented in Table 1.

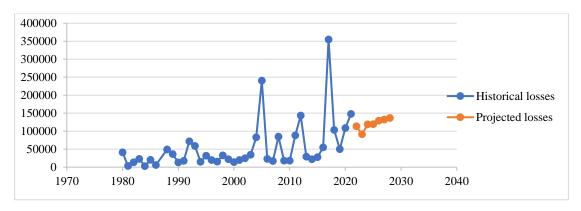


Figure 1. ARMIA model predicts extreme natural disaster losses in the US

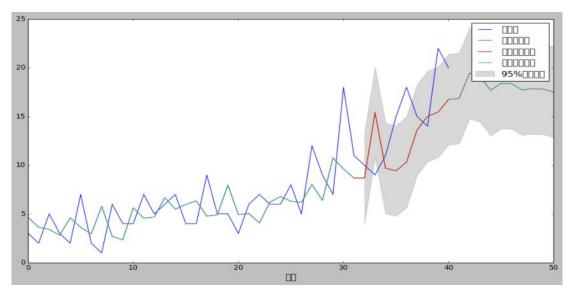


Figure 2. ARMIA model predicts frequency of extreme natural disasters in the US

Source SS		df MS			Number of obs		=		50	
Model Residual	1.3057e+12 2.6519e+11		2 6.5283e+11 47 5.6424e+09			F(2, 47) Prob > F R-squared Adi R-squared		= = =	115.70 0.0000 0.8312 0.8240	
Total	1.570	09e+12	49	3.2058e	+10		ot MSE	=		116
Q_Number_of_ir	nsur~s	Coefficient	Sto	d. err.		t	P> t	[95%	conf.	interval]
P_insurance_pi H_ability_1		28.17279 216243 -93947.63	619	950354 961.56 807.11	14. 3. -2.	49	0.000 0.001 0.008	24.24 91592 -16195	2.38	32.09639 340893.5 -25936.5

Figure 3. Multiple linear regression of policy counts via Stata

Table 1. Multiple linear regression of policy counts via Stata

Name of the state	Debt -to Inco me Rate	Consum ption per Month (\$)	Inco me per Year (\$)	Affilia tion of Debt- to- Incom e Rate	Affiliat ion of Income per month	Affiliati on of Consum ption per Year	Н	g (profit)	R (risk)	Ris k rank ed	Categ ory
Alabama	1.36	1655	569 29	0.55	0.1409 090	0.33858	0.3427 047	5657200 8	143862 17	29	1
Alaska	1.55	2484	811 33	0.3125	0.8945 454	0.82266	0.6911 776	2351258	105638 5	45	2
Arizona	1.78	1829	708 21	0.025	0.2990 909	0.61642	0.3437 952	7173459 38	829829 50	16	1
Arkansas	1.28	1534	507 84	0.65	0.0309 090	0.21568	0.2905 447	6358786	469083 5	35	1
Californi a	1.55	2529	815 75	0.3125	0.9354 545	0.8315	0.7069 863	3277412 9907	327649 2968	1	3
Colorado	1.78	2147	849 54	0.025	0.5881 8181	0.89908	0.5435 8654	3733029 01	467404 77	19	2
Connecti cut	1.36	2311	809 58	0.55	0.7372 7272	0.81916	0.7138 4581	- 6442259	570057 3	34	2
Delawar e	1.55	1904	686 87	0.3125	0.3672 7272	0.57374	0.4334 2781	- 1069595 5	715033	48	1
Florida	1.66	1943	597 34	0.175	0.4027 2727	0.39468	0.3311 9018	5433930 228	570062 801	3	4
Georgia	1.45	1833	614 97	0.4375	0.3027 2727	0.42994	0.3940 4418	1040426 965	120789 285	11	1
Hawaii	2.06	2731	821 99	1	1	0.84398	0.9375 92	1370663	387269 0	37	5
Idaho	1.95	1698	769 18	1	0.18	0.73836	0.6493 44	9218062	424000 4	36	2
Illinois	1.17 5	1934	792 53	0.7812 5	0.3945 4545	0.78506	0.6667 6263	3478461 236	362685 913	4	3
Indiana	1.17 5	1597	701 90	0.7812 5	0.0881 8181	0.6038	0.5023 4954	6523312 71	757941 27	18	2
Iowa	1.17	1789	724 29	0.7812	0.2627 2727	0.64858	0.5726 2518	1540716 71	206856 86	26	2
Kansas	1.17 5	1727	759 79	0.7812 5	0.2063 6363	0.71958	0.5841 1609	1189367 45	167931 45	28	2
Kentuck y	1.17 5	1622	556 29	0.7812	0.1109 0909	0.31258	0.3926 7972	- 1137364 2	680491 9	33	1
Louisian a	1.45	1832	572 06	0.4375	0.3018 1818	0.34412	0.3594 4345	9687946 6	176009 41	27	1
Maine	1.55	1900	711 39	0.3125	0.3636 3636	0.62278	0.4519 5290	1065862 5	345268 8	38	1
Marylan d	1.95	2356	973 32	1	0.7781 8181	1	0.9334 5454	7924076 79	883780 87	14	5
Massach usetts	1.17 5	2464	865 66	0.7812 5	0.8763 6363	0.93132	0.8698 1209	1303619 685	139849 393	7	5
Michiga n	1.17	1734	644 88	0.7812	0.2127 2727	0.48976	0.4940 9718	1028933 296	118349 662	13	2
Minnesot	1.28	2007	804 41	0.65	0.4609 0909	0.80882	0.6568 0072	7802354 14	863830 45	15	2
Mississip pi	1.45	1567	466 37	0.4375	0.0609 0909	0.13274	0.2026 1872	3989502 9	127533	44	1
Missouri	1.28	1612	635 94	0.65	0.1018 1818	0.47188	0.4142 9745	1164134 05	222240 81	25	1

Montana	1.78	1835	649 99	0.025	0.3045 4545	0.49998	0.2988 5563	- 3763935	157061 6	39	1
Nebraska	1.17 5	1663	781 09	0.7812 5	0.1481 8181	0.76218	0.5837 0154	4715341 7	806294 3	31	2
Nevada	1.78	1928	643 40	0.025	0.3890 9090	0.4868	0.3189 4727	5215655 4	106250 88	30	1
New Hampshi re	1.55	2188	888 41	0.3125	0.6254 5454	0.97682	0.6721 1436	- 1074714 3	138711 4	41	2
New Jersey	1.55	2562	885 59	0.3125	0.9654 5454	0.97118	0.7718 5836	1188024 074	132543 766	9	2
New Mexico	1.55	1608	534 63	0.3125	0.0981 8181	0.26926	0.2309 0854	2415678 8	135105 4	42	1
New York	0.75 5	2252	729 20	0.0178 34	0.6836 3636	0.6584	0.4738 0110	3142108 105	342347 186	5	2
North Carolina	1.45	1768	628 91	0.4375	0.2436 3636	0.45782	0.3874 6890	1152268 701	131299 032	10	1
North Dakota	1.17 5	1835	688 82	0.7812 5	0.3045 4545	0.57764	0.5567 9463	- 4772472	893652	46	2
Ohio	1.17 5	1666	626 89	0.7812 5	0.2427 2727	0.45378	0.4611 5972	1779811 385	194874 212	6	2
Oklahom a	1.28	1619	600 96	0.65	0.1081 8181	0.40192	0.3882 2254	-556947	694563 9	32	1
Oregon	1.66	2071	818 55	0.175	0.5190 9090	0.8371	0.5430 6727	1714682 41	242373 82	24	2
Pennsylv ania	1.17 5	1767	726 27	0.7812 5	0.2427 2727	0.65254	0.5682 0918	9858356 42	119247 0791	12	2
Rhode Island	1.55	2147	749 82	0.3125	0.5881 8181	0.69964	0.5500 6054	6019940	133461	43	2
South Carolina	1.78	1690	625 42	0.025	0.1727 2727	0.45084	0.2396 5418	3117342 52	396237 16	20	1
South Dakota	1.28	1691	738 93	0.65	0.1736 3636	0.67786	0.5182 3490	1759767	139996	40	2
Tennesse e	1.36	1663	621 66	0.55	0.1481 8181	0.44332	0.3867 8254	1882199 45	306688 35	21	1
Texas	1.17	1883	674 04	0.7812 5	0.3481 8181	0.54808	0.5580 6154	7311361 732	767409 156	2	4
Utah	1.78	1844	876 49	0.025	0.3127 2727	0.95298	0.4825	2214184 85	275313 24	23	2
Vermont	1.36	2073	760 79	0.55	0.5209 0909	0.72158	0.6099	3152612	825012	47	2
Virginia	1.78	2101	802 68	0.025	0.5463	0.80536	0.4935 5309	1212344 758	133826 838	8	2
Washing ton	1.55	2199	876 48	0.3125	0.6354 5454	0.95296	0.6655 7036	6902944 94	811473 20	17	2
West Virginia	1.28	1485	468 36	0.65	0	0.13672	0.2496 88	2626837 0	559823	49	1
Wisconsi n	1.17 5	1923	699 43	0.7812 5	0.3845 4545	0.59886	0.5892 8263	2073370 88	306446 61	22	2
Wyomin g	1.55	2107	710 52	0.3125	0.5518 1818	0.62104	0.5077 1145	- 5299158	497694	50	2

4. Conclusion

This study has successfully developed and validated a comprehensive risk assessment model integrating ARIMA forecasting, Fuzzy Comprehensive Evaluation, and Monte Carlo simulations to predict and quantify the financial impact of extreme weather events on insurance underwriting. Our

findings demonstrate the model's effectiveness in identifying regions with varying risk levels and suggest targeted underwriting strategies to optimize profitability and risk management. The systematic clustering approach further refines the decision-making process, enabling insurance companies to tailor their policies according to regional risk profiles and anticipated economic outcomes. Ultimately, this research provides a robust framework for the insurance industry to enhance resilience and strategic planning in the face of climate change-induced uncertainties. Future work will focus on refining predictive models and exploring their applicability in other sectors vulnerable to extreme weather risks.

References

- [1] Guo, Z. Q., & Gao, S. H. (2024). Research on tax insurance pricing in China: An analysis of rice insurance pricing in Yunnan Province based on ENN and ERF models. Price Theory and Practice. https://doi.org/10.19851/j.cnki.CN11-1010/F. 2024. 01. 015.
- [2] Tao, R. (2024). Research on agricultural insurance risk assessment and pricing models. Economic and Technological Cooperation, (09), 59 61. https://doi.org/10.13665/j. cnki. hzjjykj. 2024. 09. 052.
- [3] Xia, D. D., & Ren, X. X. (2012). Prediction and management of extreme weather events in the United States. Marine Eggplant, (01), 73 74. https://doi.org/CNKI: SUN: HYYB.0.2012-01-014.
- [4] Wang, H. J. (2019). Construction of prediction methods for extreme weather and climate events. Journal of Atmospheric Sciences, (01), 1. https://doi.org/CNKI: SUN: NJQX.0.2019-01 001.
- [5] Li, H. Y., Tao, J. P., & He, L. (2023). Research on pricing of sugar cane price insurance based on the "insurance + futures" model. Journal of Huazhong Agricultural University (Social Sciences Edition), (06), 96 106.
- [6] Cao, L. (2023). Research on insurance actuarial pricing model based on artificial intelligence. Finance & Information, (24), 165 167.
- [7] Yang, Z. Y., Han, T., & Zhao, Z. G. (2022). Time series prediction of line loss rate based on ARIMA-GWO-SVR combination model. Power System and Clean Energy, (07), 58 63.
- [8] Yu, Y. L., & Yang, D. Q. (2021). Research on the comprehensive fuzzy evaluation model of multi-index credit for cross-border e-commerce. Journal of Mudanjiang Normal University (Social Sciences Edition), (01), 11 22.
- [9] Ma, D. B. (2019). Comprehensive evaluation model and application of audit risk based on dynamic fuzzy evaluation. Hebei Enterprise, (12), 15 16.
- [10] Liu, X. M., & Jiang, Z. H. (2024). Analysis of factors affecting the demand for agricultural product logistics based on multiple linear regression: A case study of Sichuan Province. Logistics Technology, (03), 27 29.
- [11] Li, X., Li, J., Li, K. M., Jiao, L., Zang, F., Mao, X. X., ... & Tai, X. S. (2023). Sediment heavy metal pollution characteristics and risk assessment of Lanzhou Yintan Wetland Park based on Monte Carlo simulation. Environmental Chemistry.
- [12] Sun, Y. (2023). Risk identification and analysis during the construction phase based on Monte Carlo simulation. Popular Standardization, (20), 63 65.
- [13] Tian, Y. M., Wu, S. F., & Zhao, X. (2023). Systematic clustering analysis of Traditional Chinese Medicine syndromes in patients with Type 2 diabetic nephropathy and its relationship with disease staging. Journal of Practical Medicine, (22), 2994 2999. doi: CNKI: SUN: SYYZ.0.2023-22 024.
- [14] Gao, L. (2023). Research on small batch order production demand forecasting model based on ARIMA. Modern Information Technology, (15), 97 101.