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Abstract. Recently, the publication of the Neural Radiance Field (NeRF) has sparked a surge in 
further research, unveiling a wealth of innovative solutions in related domains. With its potent 
predictive capabilities and operational efficiency, neural networks have addressed the traditional 
trade-off dilemma, enabling real-time rendering at state-of-the-art (SOTA) quality. This breakthrough 
has introduced a novel rendering approach in computer graphics (CG) and unlocked fresh 
opportunities for real-time applications such as video games, augmented reality (AR), and virtual 
reality (VR). This paper aims to offer a comprehensive overview of recent NeRF-like methodologies 
and explore potential pathways for enhancing NeRF to achieve both real-time performance and 
photorealistic standards. Our study includes a comparative analysis of these methodologies in terms 
of their efficacy and hardware requirements. Ultimately, this paper outlines potential future 
advancements in this field. The objective of this paper is to familiarize both newcomers and 
researchers with NeRF, catalyze in-depth investigations, propose enhanced methodologies.  
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1. Introduction 

Before Artificial Intelligence (AI) was introduced to CG, many methods in CG could optimize the 

computer rendering to real-time and photo-realistic standard (here we after referenced real-time as at 

least 60 Frame Per Seconds). However, price, performance bottlenecks, visual effects, difficulty of 

implementation, cross-platform capabilities, and so on always need to be balanced. Even though great 

progress in Graphics Processing Units (GPUs) has been made compared to a few years ago, more 

theoretical support has been proposed such as Physically Based Rendering (PBR) and path tracing, 

there are still some users’ accessibility is limited. 

In the early development of AI, some non-real-time AI-aided rendering means have been proclaimed, 

which furnished CG with some AI references. These ideas exploited AI to improve the traditional 

rendering of distinct processes, however, performance is not good enough. Image-based Rendering 

(IBR) generates novel images of a scene from a set of pre-captured images. Generative Adversarial 

Networks (GANS) make use of a generator and a discriminator, two networks to create novel data 

that are indistinguishable from reality. Variational Autoencoders (VAEs) compress data to other 

representations, good for image generation and denoising. Combing PBR with Machine Learning 

(ML) to improve the quality and efficiency of complicated physical phenomena. Overall, these early 

attempts did not reach real-time and photo-realistic rendering at the same time, yet the above logic 

has played a very inspiring role in the current achievements. 

Following the previous study, recent results show that neural network rendering can achieve both 

photo-realistic and real-time. Neural network, is known for powerful predictability, better integrated 

model data and led to a unique render approach, receiving an impressive profit on rendering. Neural 

network rendering, with a low correlation to traditional rendering, and possessing more AI features, 

can be considered a groundbreaking solution to CG rendering. It is immensely valuable to do further 

study on this. 
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NeRF was inspired by Structure from Motion (SFM) and Multi-view Stereo (MVS), first proposed 

positional encoding to basic neural network volume rendering, and offered it photo-realistic graphics 

as traditional rendering methods does, and made people start to regard neural networking as a new 

method of rendering [1]. However, the rendering method being used in the original NeRF cannot 

reach the real-time standard, although it attained the iconic achievement of AI-generated picture 

resolution. Within a few years, the author observed many sorts of strengthened NeRF were published, 

and some of them succeeded in rendering the 3D scene in real-time, these ideas raised neural network 

rendering to a higher state (Figure 1). 

 

Fig.1 The NeRF volume rendering and training process [1] 

The recent research on NeRF has developed so fast that many researchers have improved NeRF in 

many directions to many distinct extents, a lot of distracting content to people interested in it. The 

author intends to provide a brief but clear developing path on real-time rendering and filter out key 

measures and orientation to facilitate NeRF to both real-time and photo-realistic. For this, the paper 

has listed each idea initiated or improved NeRF to higher ground, compared each orientation step 

within each of them, clarified their properties, and summarized them to a categoric result. Overall, 

the author attempts to supply current real-time applications with a clearer optimizing direction, and 

promote consumer a better user experience. 

Section 2 will detailed narrate advanced versions of NeRF as the development routine. 2.1, 2.2, and 

2.3 will respectively depict three main directions, volume-based, surface-based, and hybrid methods. 

They all promote the NeRF reached real-time standards. Feature comparison will be described and 

shown in section 3. Some further latent upgrowth of NeRF will be displayed in Section 4, which 

depicts what NeRF-like methods could solve and what mishap NeRF-like methods have to 

comprehend (Figure 2). 

 

Fig. 2 Paper structure (Photo/Picture credit :Original) 

2. Analyze 

The Original NeRF proved the potent force of the implicit scene representation for a large scene, it 

can economize enormous storage by just building MLP instead of listing explicit data such as mesh, 

voxel, or point cloud directly in disk, and the synthetic image achieved the same HD as traditional 

explicit pipeline. However, after NeRF was published, researchers outcropped many potential 
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problems and improved it to real-time standard. One main issue is NeRF still requires an expansive 

neural radiance field for color approximation so that is hard to index and access for later inference. 

Precisely, it equally and frequently builds the field along the camera ray for calculation efficiency, 

yet their sampling density directly decides the image resolution [2]. Not to mention extensive empty 

space is also encountered by fields and waste storage space.  

To solve these problems, papers raised many ideas to make NeRF better. Various papers can be 

divided into three categories, simulating the volume in the scene as the radiance field, tracking and 

representing geometries’ surface, and making use of both of them. At the beginning of NeRF 

development, volume-based methods are the foremost direction to escalate, which volumetrically 

render the scene by collecting the density and color in each field of view, as NeRF does. Some are 

aware the frequency of sampling becomes a huge storage burden and building surface features is 

enough and come up with surface construction. The hybrid noticed the surface took the loss of 

detailed geometric relations and tried to combine them. They are respectively narrated in Sections 

2.1, 2.2 and 2.3. 

2.1. Volume-based methods 

The main problem volume-based methods encountered is how to describe the 3D geometry better 

than NeRF. Earlier approaches just solved the accessing speed. Some papers directly modified the 

storing data format, improving both indexing and accessing. 

2.1.1. Voxel representation 

An early optimization for NeRF, PlenOctree (Yu et al. 2021) noticed the problem of NeRF that 

numerous radiance fields lead to massive data accessing, which takes the majority of time-consuming 

inference. The solution mentioned is baking the trained neural network, saving it into octree, and 

using spherical harmonics to replace the polar coordinate in the original NeRF for easier reading [3]. 

PlenOctree can improve performance at least 3000 times on rendering when compared with the 

original NeRF. At the high cost of memory, in the best case [4], it can reach about 70FPS, which can 

be considered as the earliest method to meet both HD and real-time.  

Afterward, another popular method, Sparse Neural Radiance Grid (SNeRG) (Hedman et al. 2021) is 

published. Similarly, it also transferred a trained Multi-Layer Perception (MLP) to Sparse Neural 

Radiance Grid [5], which solved complicated data structure results from frequent sampling of NeRF 

to some extent as well. Comparing the original NeRF and PlenOctree, the gird is more compact and 

reduced storage consumption. The following advancement’s best performance reached 60 FPS [4], 

endowing the possibility of HD resolution at less cost of cache, which led to another welcomed early 

result. 

2.1.2. Point representation 

3DGS (Kerbl et al. 2023) came up with a unique geometry representation, a 3D Gaussian parameter-

controlled ellipse, to simplify the data inquiring. Besides, this ellipse also contains the texture and 

density information. By iteratively adaptive modifying the parameters of the ellipse, its geometry can 

fulfill all models in the scene [6]. 3DGS reached both photo-realistic and real-time even better than 

current NeRF-like methods, which also shows data accessing weighed down the performance of 

NeRF a lot.  

2.1.3. Triplane representation 

After 3DGS came up with a competitive result on point-based and MLP-less way to render in real-

time, SMERF (Streamable Memory Efficient Radiance Fields) (Duckworth et al. 2023) claimed they 

proved NeRF-like methods are still better than 3DGS [7]. SMERF is based on MERF (Reiser et al. 

2023) uses a hash mesh compressed triplane data structure, and binarizes them to accelerate rendering 

[8]. Apart from MERF, the author announced that an extra memory is used to build sub-scenes and 

new distillation training to combine scenes up[6]. SMERF allows hardware-limited devices to run 

over 40 FPS stably, which 3DGS is unavailable, and its performance is slightly higher than 3DGS 
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rendering on desktop (10 FPS). 

2.2. Surface-based methods 

The base idea of surface-based method is more fundamentally change the radiance field 

representation. The quality of synthesis image strongly related to massive radiance field NeRF 

required. By just simulating surface feature, surface-based methods saved more storage than volume-

based methods. 

A temporary performance peak is shown by MobileNeRF (Chen et al. 2022) in the early development. 

The team points out the problem of SNeRG’s deferred rendering approach and its data format, sparse 

neural radiance grid, which cannot adapt to the common hardware. What’s more, the cache SNeRG 

employed is still exceedingly high. MobileNeRF combines the NeRF and traditional render pipeline 

and takes the processed radiance field to a lightweight MLP in the fragment shader [9]. MobileNeRF 

successfully achieved real-time and platform adaptability, easily exceeding 60 FPS in the above 

situations. Phone for 10 FPS and desktop for 400 FPS still show the limitation of hardware though, 

in related areas this new benchmark is still universally compared as well. 

BakedSDF (Yariv et al. 2023) found out that placing baked NeRF into a texture map as MobileNeRF 

directly is still unavailable and unrefined on most graphic processing applications, thus proposing an 

extended signed distance function representation. This pattern highly unified the triangle meshes 

format so that it is more available for large scenes and traditional applications [10] . In addition to 

device adaptability, the paper also provided data that tested as same condition as MobileNeRF and 

got 70 FPS rendering speed, about 10 FPS better than MobileNeRF. 

The inference speed peak for surface-based means can be found in NeRF2Mesh (Tang et al. 2023) at 

224 FPS in 1080p and 90 FPS in 4k resolution. Nerf2Mesh optimizes the quality of textured mesh 

extracted from NeRF and iteratively subdivides the surface to a simpler surface, which absorbs the 

advantage of MobileNeRF and BakedSDF and upgrade to a balanced and optimized version [11]. 

2.3. Hybrid methods 

After surface-based methods were developed for enough time, some noticed the 3D detail is fractional 

sacrificed because of the property of surface representation. Partially involving volume features in 

surface-based methods can better balance efficiency and performance. 

Hybrid methods trying to integrate other methods and VMesh (Guo et al. 2023) can be a successful 

instance. VMesh can reach 90 FPS in 4k resolution and 250 FPS in 1080p which is similar to 

NeRF2Mesh. In contrast, the representation Volume-Mesh used is capable of describing more 

detailed geometric structures. VMesh sequentially applied SDF representation, assigned newly 

proposed RefBasis texture on it, transforming to mesh to reduce the dependence on storage so that 

improved performance on consumer-grade devices [12]. The data shows the same FPS used as 

NeRF2Mesh yet almost a quarter of storage is used on the NeRF-Synthetic dataset, which is 

impressive about direct optimization without side effects. 

Afterward, Binary Opacity Grids (BOG) (REISER et al. 2024) further released storage pressure by 

discrete opacity grid instead of continuous density field, averaged multiple rays to anti-alias, binarized 

the opacity value for swift accessing, and a fitting method for converting grid to mesh for adapting 

common render pipeline [13]. Unfortunately, there is no direct comparison between VMesh and BOG, 

the paper shows BOG with Temporal Anti-Alising (TAA) has almost doubled FPS than BakedSDF 

on desktops, and even three times on hardware-limited devices.  

3. Comparison 

In this section, former methods will be compared with numerical evidence and data in papers to 

summarize the strengths and shortcomings of each category. The performance this paper mentioned 

is based on a widely used dataset and running on the desktop. Details are shown in Table 1. FPS 
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applied in Section 2 is based on Tanks & Temples (T&T)/unbounded 360° dataset if it is not 

mentioned. This dataset input and output 1920*1080 resolution images. Another mainly used 

resolution is 1600*1600. Although the MipNeRF-360 dataset  did not provide detailed resolution, 

some data are provided based on it [14]. Table 2 illustrates the performance on the highest resolution 

on consumer-grade devices. 

As Table 1 shows, the way how early methods reached real-time is paying high cost from different 

perspectives. PlenOctree had to pay over 1000 Megabytes and SNeRG sacrificed rendering speed 

even in relatively better equipment, the cost is huge to apply in industry applications. However, in 

terms of performance, later methods all have surpassed a lot than above two methods. According to 

the upsides and downsides of each device and varied resolution, VMesh and BOG are especially 

powerful when balancing FPS and storage. VMesh exceeds over 200 FPS at 10 MB storage, which 

can be an excellent solution to implicit neural networks in mobile applications. And BOG takes the 

position of cost-effective that doubled storage to exchange almost four times FPS. Hybrid methods 

show the best performance at present. 

Table 1. Frame per seconds, storage, dataset, used device comparison. Data obtained from each 

paper, performance may vary, balanced best performance and same device as the author could find, 

for reference only. 

 

Plenoctr

ee-1024 

(PNG) 

SNeR

G 

(PN) 

MobileNe

RF 

NERF2M

ESH 

VMe

sh 

BAK

ED 

SDF 

BO

G 

3D

GS 

SME

RF 

FPS 67.1 52.8 98 231 250 412 927 260 278 

Storage 

(MB) 
1112.0 139.7 125.8 73.5 13.6 434.5 

~20

0 
740 153 

Resolution/da

taset 
1920 x 1080 1600 x 1600 1920 x 1080 

MipNeRF-

360 

Device 

Lenovo 

ThinkPad P1 

Gen 2 notebook 

with a 4GB 

NVIDIA Quadro 

T1000 

Macbook Pro (2020,M1) 

laptop 

 

Desktop 

with 

NVIDIA 

RTX 3090 

ThinkStation 

P620 with 

NVIDIA 

RTX 3090 

 

Some methods focused on supporting the capacity of cross-device, Table 2 demonstrated partial 

methods’ performance in consumer-grade devices and performance in higher resolution. BOG is 

capable of different devices yet no detailed data is provided. The hybrid method still shows the merits 

that balancing from volume and surface allocates less storage, almost the same performance in all 

devices yet only a quarter of storage is used when comparing NeRF2Mesh and VMesh. 
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Table 2. Partial methods’ 2k, 4k resolution supports and cross-device capacity 

 
iPhone13 iPad8 MacBookPro (2020, M1) 

800 1600 800 1600 800 1600 2048 4096 

SNeRG -* -* -* -* 43 15 9 2 

MobileNeRF 57 -* 58 23 98 32 21 4 

Nerf2Mesh 60* 60* 60* 60* 330 224 189 93 

VMesh 60* 47 60 43 368 250 197 94 

-*: Methods do not support on this device.  60*: The highest FPS on current device. 

 

Depending on the published results in this paper, triplane indicates the best performance in volume 

representation, and hybrid methods performed the most outstanding one in all methods. The author 

speculates triplane is widely used in modern applications and hardware, more accelerating techniques 

are applied lead to this result. Hybrid methods are a trade-off and the latest solution, which thus can 

be the best temporary solution.  

Besides, BOG  made a simple comparison between volume, vertex, and triplane-voxel texture 

mapping, which is worthy to further prove the virtues of hybrid methods [12]. In the graph of BOG, 

vertex-based mapping took the least high memory consumption (VRAM), yet volume texture 

mapping displayed the best quality, finally, triplane-voxel has the highest FPS. As the result of BOG 

and this paper, the performance is highly relying on the storage and its accessing speed, which belongs 

to the hardware level. To render, NeRF developers should concern more about scene representations. 

4. Discussion 

This paper extensively discusses advanced versions of NeRF, including volume-based, surface-based, 

and hybrid methods, as part of their developmental trajectory. Through a deep exploration of these 

three main directions, this paper reveals the advantages and disadvantages of these methods in 

advancing the real-time capabilities of NeRF. Neural network rendering is getting closer to industry 

standards, and this part will make a summary of potential direction and trouble for future applications. 

Firstly, traditional rendering heavily relies on explicit representation, leading to significant storage 

pressures for current 3D applications when constructing large-scale 3D scenes. NeRF-like methods 

can play a crucial role in alleviating this issue. Despite significant advancements in GPU technology 

enabling real-time applications on desktops or laptops at a relatively lower cost, achieving a 

comparable experience on mobile devices remains a challenge. For example, some mobile games 

have attempted to address this issue by utilizing the same model data for different characters, still 

resulting in substantial storage consumption exceeding 50 gigabytes. The emergence of NeRF 

demonstrates the potential of implicit representation, underscoring the ability of NeRF-like methods 

to achieve significant storage savings in large 3D scene. Consequently, storage constraints may no 

longer pose an obstacle in the future. 

Secondly, currently, to enhance performance, NeRF developers must adhere to explicit standards 

across various applications and hardware, which can impede further advancements. While pure 

implicit methods may offer superior performance, they may not receive adequate support from 

devices or applications, thus failing to attract researchers' attention. Moreover, hardware-level 

adaptation may prove more effective than application-level modifications, as observed in prevalent 

methodologies. Some hardware manufacturers, including NVIDIA, have already begun exploring 

these possibilities. The author anticipates a rise in applications and hardware that support implicit 

methodologies, reducing the need for explicit representation adaptation and potentially leading to a 

significant performance enhancement. 
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Moreover, current neural network rendering lacks the flexibility for human intervention seen in 

traditional 3D editors, limiting artists' participation in dynamic scene generation. One viable solution 

involves integrating text-to-image techniques, wherein users input desired modifications to regulate 

Multilayer Perceptron (MLP) models in real-time, thereby altering the neural network to generate 

distinct scenes.  

5. Conclusion 

NeRF achieved remarkable outcomes in terms of photo-realistic image quality, innovative differential 

rendering, neural network, and providing traditional CG with a split-new approach for rendering. 

Apart from the publication of NeRF, the following advancements can be outstanding as well. One 

main lifting direction of NeRF is propelling the inference speed, which is also what the paper focused 

on. This topic has been developed in sufficient depth to reach real-time milestones. Three main 

approaches can all achieve real-time standards without massive losses of quality and eventually 

hybrid owns the best performance, which concludes the best scene representation based on former 

studies. The author also forecasted NeRF-like methods could solve some static scene generation and 

would have better performance with more hardware and application alterations. The most severe 

problem of NeRF is short of manual intervention to fill more artistic components and dynamic 3D. 

All in all, the NeRF-based method is a sorely promising direction to develop. 
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