Modeling the Ecosystem Water Use Efficiency of Croplands Using Machine Learning and MODIS Data

Authors

  • Xianye Meng
  • Xin Zheng
  • Jiaojiao Huang

DOI:

https://doi.org/10.62051/10.62051/ijnres.v2n1.22

Keywords:

Water Use Efficiency; Machine Learning; Eddy Covariance Technology.

Abstract

The ecosystem water use efficiency (WUE), which is the ratio of carbon gain (gross primary productivity, GPP) to water consumption (evapotranspiration, ET), is widely regarded as a crucial link in coupling the carbon and water cycles of terrestrial ecosystems on a global scale. The estimation of cropland WUE is considerably important for improving agricultural management, simulating the carbon–water cycle processes of croplands, and enhancing crop yields. Currently, the estimate of WUE primary relies on the modeled GPP and ET data. However, differences in model structures and parameter uncertainties cause remarkable differences in the accuracy of the estimated WUE among different models. The eddy covariance technology enables the continuous observation and research of carbon and water fluxes at a site scale, ensuring simulation accuracy. However, the technology is constrained by its limited spatial coverage. In this study, we integrated data from 20 global cropland sites and built 7 machine learning models based on remote sensing to directly estimate cropland WUE, thereby expanding the spatial scope of WUE simulations, omitting the simulation process for obtaining GPP and ET, and ensuring a certain degree of precision. Results show that, compared with other machine learning algorithms, the ensemble learning model has the strongest ability to reproduce cropland WUE, with a determination coefficient of 0.90 and a root mean square error of 1.54–1.75 . These results indicate that a combination of machine learning methods and remote sensing can reasonably simulate the WUE of agricultural ecosystems.

References

Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.J.N. Solutions for a cultivated planet. 2011, 478, 337-342.

Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 2011, 108, 20260-20264, doi:10.1073/pnas.1116437108.

West, P.C.; Gerber, J.S.; Engstrom, P.M.; Mueller, N.D.; Brauman, K.A.; Carlson, K.M.; Cassidy, E.S.; Johnston, M.; MacDonald, G.K.; Ray, D.K.; et al. Leverage points for improving global food security and the environment. Science 2014, 345, 325-328, doi:10.1126/science.1246067.

Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS One 2013, 8, e66428, doi:10.1371/journal.pone.0066428.

Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254-257, doi:10.1038/nature11420.

Chang, Q.; Zhang, J.; Jiao, W.; Yao, F. A comparative analysis of the NDVIg and NDVI3g in monitoring vegetation phenology changes in the Northern Hemisphere. Geocarto International 2016, 33, 1-20, doi:10.1080/10106049.2016.1222633.

Lee, R.; Yu, F.; Price, K.P.; Ellis, J.; Shi, P. Evaluating vegetation phenological patterns in Inner Mongolia using NDVI time-series analysis. International Journal of Remote Sensing 2010, 23, 2505-2512, doi:10.1080/01431160110106087.

Jeganathan, C.; Dash, J.; Atkinson, P.M. Characterising the spatial pattern of phenology for the tropical vegetation of India using multi-temporal MERIS chlorophyll data. Landscape Ecology 2010, 25, 1125-1141, doi:10.1007/s10980-010-9490-1.

Huete, A.; Justice, C.; Van Leeuwen, W.J.A.t.b.d. MODIS vegetation index (MOD13). 1999, 3, 295-309.

Solano, R.; Didan, K.; Jacobson, A.; Huete, A.J.T.T.U.o.A. MODIS vegetation indices (MOD13) C5 user’s guide. 2010.

Fang, H.; Zhang, Y.; Wei, S.; Li, W.; Ye, Y.; Sun, T.; Liu, W. Validation of global moderate resolution leaf area index (LAI) products over croplands in northeastern China. Remote Sensing of Environment 2019, 233, doi:10.1016/j.rse.2019.111377.

Olsen, J.; Dettinger, M.; Giovannettone, J.J.B.o.t.A.M.S. Drought Attribution Studies and Water Resources Management. 2023, 104, E435-E441.

Singh, A.J.A.W.M. Simulation–optimization modeling for conjunctive water use management. 2014, 141, 23-29.

Agarwal, A.; de los Angeles, M.S.; Bhatia, R.; Chéret, I.; Davila-Poblete, S.; Falkenmark, M.; Villarreal, F.G.; Jønch-Clausen, T.; Kadi, M.A.; Kindler, J. Integrated water resources management; Global water partnership Stockholm: 2000.

Ribeiro, M.T.; Singh, S.; Guestrin, C. " Why should i trust you?" Explaining the predictions of any classifier. In Proceedings of the Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016; pp. 1135-1144.

Doshi-Velez, F.; Kim, B.J.a.p.a. Towards a rigorous science of interpretable machine learning. 2017.

Downloads

Published

06-04-2024

Issue

Section

Articles

How to Cite

Meng, X., Zheng, X., & Huang, J. (2024). Modeling the Ecosystem Water Use Efficiency of Croplands Using Machine Learning and MODIS Data. International Journal of Natural Resources and Environmental Studies, 2(1), 202-209. https://doi.org/10.62051/10.62051/ijnres.v2n1.22