Kinetic Study of the Formation Process of Ni-Zr Alloys
DOI:
https://doi.org/10.62051/ijmsts.v2n2.03Keywords:
Ni-Zr alloy, Molecular dynamics simulation, Microstructure, Rapid solidification processAbstract
In this study, Ni-Zr alloy glass is chosen as the research object, and we use the molecular dynamics method to simulate and study the microstructure evolution of Ni-Zr alloy at different temperatures. The computational analysis carried out using LAMMPS, and investigated the effect of five different cold speeds on the amorphization potential of Ni-Zr. Additionally, the structural properties of Ni-Zr amorphous clusters at different cold speeds were elucidated. The results shown that cold speed is a key factor influencing the ability of Ni-Zr to form amorphous. Furthermore, amorphous formation is more likely to occur at higher cold speeds. The formation of amorphous is facilitated under the condition of higher cold speeds. By investigating the microevolutionary process and the relationship between structural entropy and temperature, it can be seen that the entropy value of the structure shows an increasing trend with the increase of temperature and cold speed. This indicates that the structure's instability increases with increasing cold speed, which is favorable to the glass-forming ability of Ni-Zr. The kinetic process and structural analysis facilitate an in-depth comprehension of the microstructural evolution law and evolution mechanism of the Ni-Zr alloy, thereby providing a more reliable theoretical basis for the application and optimization of this material.
References
[1] Xu, S.; Jia, F.; Zhao, G.; Wu, W.; Ren, W. A Two-Dimensional Ferroelectric Ferromagnetic Half Semiconductor in a VOF Monolayer. J. Mater. Chem. C 2021, 9 (29), 9130–9136. https://doi.org/10.1039/D1TC02238E
[2] Sethulakshmi, N.; Mishra, A.; Ajayan, P. M.; Kawazoe, Y.; Roy, A. K.; Singh, A. K.; Tiwary, C. S. Magnetism in Two-Dimensional Materials beyond Graphene. Materials Today. 2019, 27, 107–122. https://doi.org/10.1016/j.mattod.2019.03.015
[3] Wang Q.H.; Amilcar B.P.; Mark B.; Avalon H.D. The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS Nano. 2022, 16: 6960-7079. https://pubs.acs.org/doi/full/ 10.1021/acsnano.1c09150
[4] Lu, M.; Yao, Q.; Li, Q.; Xiao, C.; Huang, C.; Kan, E. Tuning Electronic and Magnetic Properties of Two-Dimensional Ferromagnetic Semiconductor CrI3 through Adsorption of Benzene. J. Phys. Chem. C 2020, 124 (40), 22143–22149. https://doi.org/10.1021/acs. jpcc.0c06071
[5] Si C.; Zhou, J.; Sun, Z. Half-Metallic Ferromagnetism and Surface Functionalization-Induced Metal–Insulator Transition in Graphene-like Two-Dimensional Cr2C Crystals. ACS Appl. Mater. Interfaces 2015, 7 (31), 17510–17515. https://doi.org/10.1021/acsami.5b05401
[6] Liu, J.; Shi, M.; Lu, J.; Anantram, M. P. Analysis of Electrical-Field-Dependent Dzyaloshinskii-Moriya Interaction and Magnetocrystalline Anisotropy in a Two-Dimensional Ferromagnetic Monolayer. Phys. Rev. B 2018, 97 (5), 054416. https://doi.org/10.1103/ PhysRevB.97.054416
[7] Wu, M.; Zeng, X. C. Intrinsic Ferroelasticity and/or Multiferroicity in Two-Dimensional Phosphorene and Phosphorene Analogues. Nano Lett. 2016, 16 (5), 3236–3241. https://doi.org/10.1021/acs.nanolett.6b00726
[8] Lei, Z.; Sathish, C. I.; Geng, X.; Guan, X.; Liu, Y.; Wang, L.; Qiao, L.; Vinu, A.; Yi, J. Manipulation of Ferromagnetism in Intrinsic Two-Dimensional Magnetic and Nonmagnetic Materials. Matter 2022, 5 (12), 4212–4273. https://doi.org/10.1016/j.matt.2022.11.017
[9] Wang, B.; Zhang, X.; Zhang, Y.; Yuan, S.; Guo, Y.; Dong, S.; Wang, J. Prediction of a Two-Dimensional High- TC f-Electron Ferromagnetic Semiconductor. Mater. Horiz. 2020, 7 (6), 1623–1630. https://doi.org/10.1039/D0MH00183J
[10] Huang, P.; Zhang, P.; Xu, S.; Wang, H.; Zhang, X.; Zhang, H. Recent Advances in Two-Dimensional Ferromagnetism: Materials Synthesis, Physical Properties and Device Applications. Nanoscale 2020, 12 (4), 2309–2327. https://doi.org/10.1039/C9NR08890C
[11] David L.C; Grace L.C.; Causer K.C.; Helmut F.; Wolfgang K.; Frank K. Two‐Dimensional Magnets: Forgotten History and Recent Progress towards Spintronic Applications. Advanced functional materials. 2020, 30, 1901414. https://onlinelibrary.wiley.com/doi/epdf/10.1002/ adfm.201901414
[12] Blügel, S. Two-Dimensional Ferromagnetism of 3 d, 4 d, and 5 d Transition Metal Monolayers on Noble Metal (001) Substrates. Phys. Rev. Lett. 1992, 68 (6), 851–854. https://doi.org/ 10.1103/PhysRevLett.68.851
[13] Wang, M.; Kang, L.; Su, J.; Zhang, L.; Dai, H.; Cheng, H.; Han, X.; Zhai, T.; Liu, Z.; Han, J. Two-Dimensional Ferromagnetism in CrTe Flakes down to Atomically Thin Layers. Nanoscale 2020, 12 (31), 16427–16432. https://doi.org/10.1039/D0NR04108D
[14] Wang, B.; Zhang, X.; Zhang, Y.; Yuan, S.; Guo, Y.; Dong, S.; Wang, J. Prediction of a Two-Dimensional High- TC f-Electron Ferromagnetic Semiconductor. Mater. Horiz. 2020, 7 (6), 1623–1630. https://doi.org/10.1039/D0MH00183J
[15] Li, Z.; Cao, T.; Louie, S. G. Two-Dimensional Ferromagnetism in Few-Layer van Der Waals Crystals: Renormalized Spin-Wave Theory and Calculations. Journal of Magnetism and Magnetic Materials 2018, 463, 28–35. https://doi.org/10.1016/j.jmmm.2018.04.064
[16] Jiang, S.; Shan, J.; Mak, K. F. Electric-Field Switching of Two-Dimensional van Der Waals Magnets. Nature Mater 2018, 17 (5), 406–410. https://doi.org/10.1038/s41563-018-0040-6
[17] Khan, I.; Marfoua, B.; Hong, J. Electric Field Induced Giant Valley Polarization in Two Dimensional Ferromagnetic WSe2/CrSnSe3 Heterostructure. npj 2D Mater Appl 2021, 5 (1), 1–8. https://doi.org/10.1038/s41699-020-00195-9
[18] You, J.-Y.; Dong, X.-J.; Gu, B.; Su, G. Electric Field Induced Topological Phase Transition and Large Enhancements of Spin-Orbit Coupling and Curie Temperature in Two-Dimensional Ferromagnetic Semiconductors. Phys. Rev. B 2021, 103 (10), 104403. https://doi.org/10.1103/ PhysRevB.103.104403
[19] Choi, J. S.; Yoo, J. Simultaneous Structural Topology Optimization of Electromagnetic Sources and Ferromagnetic Materials. Computer Methods in Applied Mechanics and Engineering 2009, 198 (27), 2111–2121. https://doi.org/10.1016/j.cma.2009.02.015
[20] Guo, Y.; Zhang, Y.; Zhou, Z.; Zhang, X.; Wang, B.; Yuan, S.; Dong, S.; Wang, J. Spin-Constrained Optoelectronic Functionality in Two-Dimensional Ferromagnetic Semiconductor Heterojunctions. Mater. Horiz. 2021, 8 (4), 1323–1333. https://doi.org/10.1039/D0MH01480J
[21] Khan, I.; Marfoua, B.; Hong, J. Electric Field Induced Giant Valley Polarization in Two Dimensional Ferromagnetic WSe2/CrSnSe3 Heterostructure. npj 2D Mater Appl 2021, 5 (1), 1–8. https://doi.org/10.1038/s41699-020-00195-9
[22] Guo Y, Wang B, Zhang X, Yuan S, Ma L, Wang J, Magnetic two‐dimensional layered crystals meet with ferromagnetic semiconductors, InfoMat, 2020, 2(4): 639-655. https://onlinelibrary. wiley.com/doi/epdf/10.1002/inf2.12096
[23] Wang, M.; Kang, L.; Su, J.; Zhang, L.; Dai, H.; Cheng, H.; Han, X.; Zhai, T.; Liu, Z.; Han, J. Two-Dimensional Ferromagnetism in CrTe Flakes down to Atomically Thin Layers. Nanoscale 2020, 12 (31), 16427–16432. https://doi.org/10.1039/D0NR04108D
[24] Du, J.; Wen, B.; Melnik, R.; Kawazoe, Y. First-Principles Studies on Structural, Mechanical, Thermodynamic and Electronic Properties of Ni–Zr Intermetallic Compounds. Intermetallics. 2014, 54, 110–119. https://doi.org/10.1016/j.intermet.2014.05.021
[25] Zhang, C.; Yan, S. First-Principles Study of Ferromagnetism in Two-Dimensional Silicene with Hydrogenation. J. Phys. Chem. C. 2012, 116 (6), 4163–4166. https://doi.org/ 10.1021/ jp2104177
[26] Yang, K.; Fan, F.; Wang, H.; Khomskii, D. I.; Wu, H. VI 3 : A Two-Dimensional Ising Ferromagnet. Phys. Rev. B 2020, 101 (10), 100402. https://doi.org/10.1103/ PhysRevB. 101.100402
[27] Tian, Y.; Gray, M. J.; Ji, H.; Cava, R. J.; Burch, K. S. Magneto-Elastic Coupling in a Potential Ferromagnetic 2D Atomic Crystal. 2D Mater. 2016, 3 (2), 025035. https://doi.org/10.1088/ 2053-1583/3/2/025035
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.