

International Journal of Mechanical and Electrical Engineering

ISSN: 3005-9615 (Print), ISSN: 3005-7132 (Online) | Volume 2, Number 3, Year 2024
DOI: https://doi.org/10.62051/ijmee.v2n3.07

Journal homepage: https://wepub.org/index.php/IJMEE/index

Content from this work may be used under the terms of CC BY-NC 4.0 licence (https://creativecommons.org/licenses/by-nc/4.0/).
Published by Warwick Evans Publishing.

WEP
Warwick

Evans

Publishing

Improved Q-learning Algorithm to Solve the Permutation Flow
Shop Scheduling Problem

Zifeng Xuan, Yunfei Liu, Xinxin Peng

School of Mechanical Engineering and Automation, Wuhan Textile University, China

ABSTRACT

A modified Q-learning algorithm is proposed for the permutation flow shop scheduling problem. This
algorithm initializes the environment with the job sequence and considers each processable job as
an executable action. A reward function is defined as the reciprocal of the completion time. Moreover,
the completion time is calculated using the principle of diagonalization of a two-dimensional matrix,
significantly enhancing computational efficiency. The Boltzmann action exploration strategy is
designed, where the probability of selecting an action decreases as the temperature coefficient T
decreases, and the probability of randomly selecting an action decreases, favoring the selection of
actions corresponding to larger Q values. Finally, the performance of the proposed algorithm is
validated using instances of permutation flow shop scheduling problems of different scales. By
comparing the results with standard instances and other algorithms, the accuracy of the algorithm is
demonstrated.

KEYWORDS

Q-learning Algorithm; Boltzmann Action Exploration Strategy; Permutation Flow Shop.

1. INTRODUCTION

In an era marked by the rapid advancement of technology in the 21st century, the scale of production
and operations in the manufacturing industry continues to expand, accompanied by increasing
complexity[1]. This shift has made scheduling problems increasingly crucial in the industrial and
manufacturing sectors. Among these, the permutation flow shop scheduling problem (PFSP) stands
out as a significant research topic in manufacturing. This problem finds broad applications in
industries such as industrial manufacturing, semiconductor manufacturing, pharmaceuticals, and food
production. Therefore, effectively addressing the permutation flow shop scheduling problem has
become a focal point for enterprises and research institutions[2]. However, the complexity of the
PFSP cannot be ignored, as it has been proven to be an NP-Hard problem.

Research on PFSP by domestic and international scholars is extensive, particularly in the realm of
intelligent optimization algorithms. Yan Hongchao et al[3]conducted in-depth research on the NEH-
based heuristic algorithm and proposed an innovative hybrid Crow Search Algorithm. They
introduced novel methods to enhance the quality and diversity of the initial population. Li Yang et
al[4] proposed an innovative improved Simulated Annealing algorithm. This algorithm optimizes the
initial annealing temperature deeply, introduces corresponding computational functions, and adopts
a probability-based multi-strategy cooperative search to generate new solutions, significantly
improving the quality of solutions.

64

2. ALGORITHM INTRODUCTION

The Q-learning algorithm is an important reinforcement learning algorithm, and the foundation of
many reinforcement learning algorithms is the Markov Decision Process (MDP), on which the Q-
learning algorithm is based. Specifically, the machine operates within an environment where each
state represents the machine's perception of the current environment. The machine can only influence
the environment through actions, and when it takes an action, the environment transitions to another
state according to some probability. Additionally, the environment provides the machine with a
reward based on a potential reward function. In summary, reinforcement learning mainly consists of
four elements: states, actions, transition probabilities, and reward functions, as illustrated in Fig.1.

Agent

State st

Environment

Reward rt+1 Action at

Figure 1. Markov state transfer diagram

3. ALGORITHM DESIGN

3.1. State Space Design

The processing status of jobs is abstracted into an index sequence, where each index corresponds to
a unique identifier for a job awaiting processing. In the initial state, this sequence contains the indices
of all jobs. Given that the algorithm is implemented in Python, the index of the first job is defined as
zero. Therefore, the initial sequence is ଵܵ ൌ ሾ0,1,2, … , ݊ െ 1ሿ, where n represents the total number
of jobs, indicating that all jobs are yet to be processed. After selecting a job for processing in each
step, the index of the processed job is removed from the sequence, transitioning to the next state ܵᇱ.
For instance, if the job with index 1 is selected for processing, the next state becomes ܵଶ ൌ
ሾ0,2,3, … , ݊ െ 1ሿ, indicating that job 1 has been processed. This process continues until all jobs are
processed, resulting in an empty sequence, ܵ ൌ ሾሿ, signifying the end of one iteration. Based on the
designed number of iterations, the state space will be trained to obtain the optimal state representation.

3.2. Action Set Design

The choice of action depends on the current state. Given that there are ݊ jobs waiting to be processed,
each job may be chosen as the current action. That is, ܣ௜ ൌ ሼܽଵ, ܽଶ, … , ܽ௡ሽ. According to the selection
policy, one of the available jobs ܽ௜ is optimally selected for processing. Based on this selection
policy, the state is updated accordingly. This process continues until the maximum number of
iterations is reached, at which point the actions are selected optimally based on the trained ܳሺݏ, ܽሻ
values.

3.3. Reward Function Design

In this section, the performance objective is to minimize the maximum completion time. The reward
function ܴሺݏ, ܽሻ is also chosen to minimize the maximum completion time as a feedback function.
For the current state ௜ܵ and the selected action ܽ௜, the reward calculation considers the completion
time associated with selecting that action. If the chosen action leads to a smaller maximum completion
time, the reward value will increase accordingly; otherwise, it will decrease. Thus, the reward
function is inversely proportional to the objective. The reward function is expressed as:

65

ܴሺݏ, ܽሻ ൌ
1

݊ܽ݌ݏ݁݇ܽ݉
ሺ1ሻ

 Solution Design࢞ࢇ࢓࡯ .3.4

The specific computation steps are as follows:

Step 1: According to the above description, the two-dimensional matrix has a total of ݊ ൅݉ െ 1
diagonals.

Step 2: There are ݊ ൅݉ െ 1 diagonals in total, and adjacent diagonals have different traversal
directions. If the current traversal direction is from top-left to bottom-right, then the next adjacent
diagonal's traversal direction is from top-right to bottom-left.

Step 3: Let the index of the diagonal from top to bottom be ݅ ∈ ሾ0,݉ ൅ ݊ െ 2ሿ. When ݅ is even, the
traversal direction of the ݅ diagonal is from bottom to top; when ݅ is odd, the traversal direction of
the ݅ diagonal is from top to bottom.

Step 4: When ݅ ൏ ݉ , the starting position of the diagonal traversal is ሺ݅, 0ሻ; when ݅ ൒ ݉ , the
starting position of the diagonal traversal is ሺ݉ െ 1, ݅ െ ݉ ൅ 1ሻ.

Step 5: When the ݅ diagonal is traversed from top to bottom, increment the row index and decrement
the column index until reaching the edge of the matrix. When ݅ ൏ ݊, the starting position of the
diagonal traversal is ሺ݅, 0ሻ; when ݅ ൒ ݊, the starting position of the diagonal traversal is ሺ݅ െ ݊ ൅
1, ݊ െ 1ሻ.

3.5. Algorithm Process

The process of using the Q-learning algorithm to solve the replacement flow shop scheduling problem
is shown in Fig.2:

Initialize Q-learning

Initialize the Q table

Select actions based on
action set rules

Calculate makespan
and reward

 training
times?

Update Q table value
based on reward

Output the best
individual

start

end

Y

N

Figure 2. Flowchart of Q-learning algorithm for solving PFSP

66

4. EXPERIMENTAL RESULTS AND ANALYSIS

4.1. Parameter Settings

The Q-learning algorithm uses python3.11 as the programming language and runs in the
Pycharm2023 development environment. After preliminary comparison of experimental results, the
impact of different parameters on the results was obtained, and it was finally determined that the
number of iterations was 1000, the learning rate was 0.4, and the discount factor was 0.8.

4.2. Result Analysis

In order to verify the performance of the proposed algorithm, comparisons are made from the best
relative error (BRE), average relative error (ARE). The best relative error (BRE), average relative
error (ARE)of all compared algorithms are calculated as follows:

ܧܴܣ ൌ
௔௩ܥ െ ௠௔௫ܥ

௠௔௫ܥ
ൈ 100% ሺ2ሻ

ܧܴܤ ൌ
௜ܥ െ ௠௔௫ܥ

௠௔௫ܥ
ൈ 100% ሺ3ሻ

Firstly, the Q-learning algorithm for solving the PFSP problem is compared with the Discrete Bat
Algorithm (DBA)[5], the Differential Evolution and Estimation of Distribution Algorithm (DE-EDA).
A set of 5 Rec test instances is used to test the ARE, BRE, and WRE values of these algorithms.
Smaller values of ARE, BRE indicate better optimization performance of the algorithm. The specific
test results are shown in Table 1, where the Q-learning algorithm is denoted as QL.

Table 1. Comparison of Algorithmic Metrics

DBA DE-EDA HSOS QL

BRE ARE BRE ARE BRE ARE BRE ARE

Rec01 0.000 0.080 0.000 0.020 0.000 0.000 0.000 0.000

Rec03 0.000 0.081 0.000 0.000 0.000 0.000 0.000 0.000

Rec05 0.242 0.242 0.000 0.230 0.000 0.000 0.000 0.222

Rec07 0.000 0.575 0.000 0.000 0.000 0.000 0.000 0.000

Rec09 0.000 0.638 0.000 0.010 0.000 0.000 0.000 0.000

Rec11 1.049 2.580 1.620 2.320 0.831 2.488 0.000 0.889

Figure 3. Comparison of best relative error results

67

Figure 4. Comparison of average relative error results

The BRE, ARE curves of the comparison algorithms are plotted using the Rec test set in Fig.3
Fig.4.The comparative indicator values are all smaller than those of other optimization algorithms.
Since smaller values indicate better optimization performance, it can be concluded that the Q-learning
algorithm achieves values closer to the optimal solution. This further demonstrates that the
optimization performance achieved by the Q-learning algorithm is superior.

To validate the improvement in solving speed of the enhanced Q-learning algorithm, the computation
time for each algorithm was calculated for the Rec21 instance. Figure 5 shows the comparison of
computation time for each algorithm. It is evident from the graph that the proposed algorithm has the
shortest computation time at 43.6 seconds, which is 2.1 seconds faster than the fastest intelligent
optimization algorithm, DBA. This demonstrates that using the calculation method with a two-
dimensional matrix to compute completion time can indeed enhance computation speed.

Figure 5. Computation time of different algorithms

5. CONCLUSION

This paper proposes an improved Q-learning algorithm for solving PFSP, which involves
enhancements to the state set, action set, and reward function. Additionally, by leveraging the
structure of a two-dimensional array, the algorithm improves efficiency in computing completion
time and significantly enhances the convergence speed of the problem.In summary, by improving the
Q-learning algorithm for PFSP, faster and more accurate optimization results can be achieved. Future
research can further explore the potential application of this algorithm in other domains and combine
it with other optimization algorithms for improvement in performance and applicability.

68

REFERENCES

[1] WANG L, PAN Z and Wang J. " A Review of Reinforcement Learning Based Intelligent Optimization for
Manufacturing Scheduling," in Complex System Modeling and Simulation, vol. 1, no. 4, pp. 257-270, December
2021.

[2] Li XinYu, Huang JiangPin, Li JiangHang. Research and Development Trend Analysis of Dynamic Scheduling in
Intelligent Workshops[J]. Science in China: Technical Sciences, 2023,53(07):1016-1030.

[3] Lu Y, Jiang T. Bi-population based discrete bat algorithm for the low-carbon job shop scheduling problem [J]. IEEE
Access, 2019, 7: 14513-14522.

[4] Dai M, Zhang Z, Giret A, et al. An enhanced estimation of distribution algorithm for energy-efficient job-shop
scheduling problems with transportation constraints[J]. Sustainability, 2019, 11(11): 3085.

[5] Qin Xuan, Fang ZiHan, Zhang ZhaoXin. Solving Permutation Flow Shop Scheduling Problem using Hybrid
Symbiotic Organisms Search Algorithm [J]. Journal of Zhejiang University (Engineering Science
Edition),2020,54(04):712-721.

