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ABSTRACT  

Aiming at the problems that multi-objective optimization algorithms are prone to fall into local optima 
and yield uneven solution set distributions in the magnetic circuit optimization of permanent magnet 

DC coreless motors for the aerospace field, an improved NSGA-Ⅲ multi-objective optimization 

algorithm is proposed. This algorithm incorporates a dynamic adaptive crossover and mutation 
mechanism, a normal distribution crossover operator, and a dynamic crowding degree operator, 
which effectively enhances the global search capability in high-dimensional objective spaces and 
the distribution uniformity of the Pareto solution set, thus solving the problems that traditional 
algorithms tend to fall into local optima and suffer from insufficient solution set diversity in multi-
objective collaborative optimization. Taking the maximization of torque coefficient, minimization of 
torque ripple, and minimization of magnetic leakage coefficient of the coreless motor as the core 
optimization objectives, a high-precision surrogate model between the objective functions and 
decision variables was established based on the response surface methodology, and embedded 

into the improved NSGA-Ⅲ algorithm to realize the multi-objective optimization of magnetic circuit 

parameters. Simulation results show that after optimization, the motor torque coefficient is increased 
by 29%, the torque ripple is reduced by 13%, and the magnetic leakage coefficient is decreased by 
37%, with comprehensive performance indicators improved significantly, indicating favorable 
engineering application value. 
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1. INTRODUCTION 

As a type of micro special motor with a coreless rotor structure, the permanent magnet DC coreless 

motor has become a core actuator in aerospace steering gear systems due to its unique structural 
advantages [1]. This motor type completely eliminates the hysteresis loss and eddy current loss caused 
by the rotor core, thus significantly improving motor energy efficiency and control sensitivity. Its low 

moment of inertia can meet the dynamic operating requirements of steering gear systems, such as 
frequent start-stop and rapid commutation, enabling delay-free response and ensuring the accuracy 

and timeliness of aircraft attitude adjustment. The low vibration and low noise advantages brought 
by the coreless structure enhance the operational stability of the steering gear system under extreme 
environments, effectively avoiding component wear or performance degradation caused by vibration 

in traditional motors. However, its special coreless structure also leads to increased magnetic circuit  
reluctance and obvious magnetic leakage, which in turn affects the stability of torque output and 

energy conversion efficiency [2]. Traditional magnetic circuit optimization methods for motors 
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mostly rely on engineering experience-based trial-and-error or single-objective optimization 
approaches, which are difficult to systematically address the trade-off between multiple conflicting 
objectives [3]. Therefore, it is necessary to introduce efficient multi-objective optimization methods 

to improve the comprehensive performance of motors. 

At present, mainstream algorithms in the research of motor multi-objective optimization [4-6] include 

the Non-dominated Sorting Genetic Algorithm II (NSGA-II), the Multi-Objective Particle Swarm 
Optimization (MOPSO), and the Multi-Objective Evolutionary Algorithm based on Decomposition 
(MOEA/D). Benefiting from their mature principles and easy implementation, these algorithms have 

been widely applied to parameter optimization of general industrial motors, covering medium and 
low-dimensional optimization scenarios with no more than three objectives. Among them, MOPSO 

has weak global search capability and is prone to falling into local optima, often resulting in 
insufficient diversity of solution sets and failure to cover schemes with different performance trade-
offs. MOEA/D decomposes multi-objective problems relying on weight vectors; its decomposition 

accuracy decreases significantly in the case of strong nonlinear coupling. When the number of 
optimization objectives exceeds four, it is difficult to achieve uniform distribution of weight vectors, 

leading to insufficient coverage of optimal solutions. The core limitation of NSGA-II [7] lies in high-
dimensional objective scenarios. With the increase in the number of motor optimization objectives, 
the proportion of non-dominated solutions in the population rises sharply, making it difficult to 

effectively distinguish the quality of solutions. Meanwhile, the calculation of crowding distance loses 
effective discriminability in high-dimensional spaces, failing to ensure the uniformity of solution sets. 

As a result, the obtained optimal solutions may only cover partial objective directions and miss key 

performance combinations. 

The Non-dominated Sorting Genetic Algorithm NSGA-III [8-9] is a multi-objective optimization 

algorithm proposed by Deb's team based on the improvement of NSGA-II. Its core is to address the 
shortcomings of NSGA-II in high-dimensional optimization scenarios. By introducing the reference 
point mechanism, adaptive normalization strategy, and niche selection strategy, NSGA-III is well 

adapted to high-dimensional objective optimization scenarios, balances the distribution of multiple 
solution sets in high-dimensional spaces, avoids local aggregation or regional gaps, and ultimately 

achieves accurate exploration of the Pareto optimal front. Nevertheless, the standard NSGA-III still 
has some drawbacks, such as fixed crossover and mutation parameters, limited exploration capability 
of genetic operators, and the tendency of niche selection to cause repeated selection of individuals. 

Especially in the magnetic circuit optimization of motors with multiple parameters, there is still room 

for improvement in its global search efficiency and convergence accuracy. 

To solve the above problems, this study proposes an improved NSGA-III algorithm to enhance its 
applicability and performance in the multi-objective magnetic circuit optimization of coreless motors. 
The improvement strategies mainly include the following aspects: first, a dynamic adaptive crossover 

and mutation mechanism is introduced, which can be dynamically adjusted according to the 
characteristics of the optimization problem and the evolutionary state of the population; second, the 

normal distribution crossover operator is adopted to replace the traditional simulated binary crossover, 
improving the diversity of offspring generation and the exploration capability of the global solution 
space; third, a dynamic crowding degree operator is introduced to regulate the spatial distribution 

characteristics of the population. Taking the maximization of motor torque coefficient, the 
minimization of torque ripple and the minimization of magnetic leakage coefficient as the core 

optimization objectives, a high-precision surrogate model between the objective functions and 
decision variables (including motor housing inner diameter, magnet inner diameter, winding pitch 
and wire diameter) is established based on the response surface methodology. This model is then 

embedded into the improved NSGA-III algorithm to realize multi-objective optimization of magnetic 
circuit parameters and obtain the Pareto optimal solution set. Finally, the feasibility and engineering 

application value of the proposed optimization scheme are verified through finite element simulation. 
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2. NSGA-Ⅲ ALGORITHM AND ITS IMPROVEMENT 

2.1. Basic Principles of the NSGA-Ⅲ Algorithm 

NSGA-III is basically consistent with NSGA-II in the operations of population evolution initialization, 

parent and offspring population combination, and non-dominated sorting. Its core differences lie in 
the selection, crossover and mutation strategies during the offspring population generation phase. It 

mainly introduces hyperplane reference point construction, population adaptive normalization, the 
mapping relationship between population individuals and reference points, and niche preservation 

operations [7]. The specific implementation process is as follows: 

(1) Non-dominated ranking classification serves as the basis for population screening, with its core 
objective being to select a candidate set of appropriate size from the merged population, so as to lay 

the groundwork for subsequent refined selection. If the number of individuals in the merged 

population tS  is exactly equal to the preset population size N , population tS  will be directly 

adopted as the parent population t 1P+  of the next generation. If the size of population tS  exceeds 

N , a stepwise screening process based on non-dominated ranks is required. First, the non-dominated 

individuals of the top t 1−  ranks are incorporated into the parent population t 1P+  of the next 

generation. At this point, there are still t+1K N P= −  vacancies in population t 1P+ . Finally, it is 

necessary to further select K  optimal individuals from the non-dominated individual set tF  of the 

L-th rank to supplement population t 1P+ , thus completing the preliminary scale control. 

(2) Determination of hyperplane reference points for constructing a uniform distribution in the high-
dimensional space. Given the preset population size, the dimension of the objective function, and the 

number of partitions in the objective space, a hyperplane is constructed on the basis of reference 

points, and its mathematical expression is as follows: 

 
p

p 1MH C + −=                                     (1) 

 
(3) Adaptive normalization of the population. The normalization formula for each individual in the 

population is expressed as follows: 
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(4) Establishing the mapping relationship between population individuals and reference points. First, 

with the origin as the starting point, reference lines extending from the origin to each reference point 
are constructed, and all such reference lines lie on the established hyperplane. The perpendicular 

distance from each individual in population tS  to each reference line is calculated, and the reference 

point corresponding to the minimum distance is defined as the associated reference point of this 
individual, which ensures that the individual is highly aligned with the objective direction of the 

reference point. 
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(5) Niche preservation operation. The total number of individuals with a Pareto rank lower than N  

is equal to t 1P+ , which is the total number of individuals in the top L-1 ranks. However, the total 

number of individuals in the top L Pareto ranks exceeds N . Hence, K  individuals are to be selected 

from the population tF  with a Pareto rank of L, among which t 1K N P+= − . 

A reference point may have no associated individuals, or be associated with one or more individuals, 

where pj denotes the number of individuals associated with the j-th reference point. The niche 
preservation operation first counts the number of associated individuals for each reference point j, 
and prioritizes the set of reference points with the smallest number of associated individuals; if 

multiple reference points have the same number of associated individuals, one is selected randomly. 
The specific selection logic is as follows: if pj=0, no individuals corresponding to this reference point 

are selected; if pj≥1, one associated individual is randomly selected and incorporated into t 1P+ , and 

the count of pj is incremented by one. The above selection process is repeated K  times until the size 

of t 1P+  reaches N , thus completing the entire population selection. 

In summary, the population selection strategy of NSGA-III establishes reference points in the 

objective space and builds the mapping relationship between population individuals and these 
reference points, then employs niche preservation to maintain population diversity. This approach 
addresses the problem of uneven distribution of solution sets in high-dimensional spaces, ensures the 

diversity of solutions, and ultimately achieves uniform coverage of the Pareto optimal front in the 

objective space. 

2.2. An Improved NSGA-Ⅲ Algorithm 

(1) Dynamic Adaptive Adjustment 

The crossover probability and mutation probability adopted in the traditional NSGA-III algorithm 
follow a fixed pattern. The static parameter configuration fails to adapt to the requirements of different 

stages in the optimization process. Specifically, the parameter settings may be overly conservative 
when strong exploration capability is required in the early stage of optimization, while they may turn 
out to be excessively radical when strong exploitation capability is needed in the later stage. This 

parameter rigidity is prone to cause search stagnation, making the algorithm unable to adaptively 

adjust its exploration and exploitation capabilities in both the early and late stages of evolution. 

In this paper, an adaptive crossover and mutation mechanism is introduced. The core idea is to 
dynamically adjust the crossover probability and mutation probability according to the characteristics 
of the optimization problem and the evolutionary state of the population, instead of using fixed values. 

Through the dynamic adaptation of the strategy, the population is prevented from falling into local 
optima due to insufficient diversity in the early stage of evolution, or from experiencing a decline in 

convergence efficiency due to excessive randomization in the later stage. The specific setting of the 

probabilities is as follows: 

1min
1 1max

1max

t
1
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G T

 
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Where 1G  denotes the crossover probability; 1maxG  is the maximum crossover probability; 1minG  is 

the minimum crossover probability; t  represents the current number of iterations; and T  is the 

maximum number of iterations. 
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Where 2G  denotes the mutation probability; 2maxG  is the maximum mutation probability; and 

2minG  is the minimum mutation probability. 

(2) Enhancement of Genetic Operators 

The NSGA-III algorithm adopts the conventional simulated binary crossover SBX operator. During 

gene recombination, the generation mode of offspring individuals is relatively fixed, with limited 
fluctuations mainly around the gene range of parent individuals. This makes it difficult to break 
through the constraints of the local search space, leading to a gradual convergence of the population 

during the evolutionary process. Particularly in high-dimensional objective spaces or multimodal 
problems, such convergence will rapidly narrow the distribution range of solutions, trapping the 

algorithm in local optima and preventing it from exploring a broader range of potential optimal 

solutions. 

Compared with the conventional SBX operator, the normal distribution crossover NDX operator 

demonstrates remarkable advantages in balancing exploration and exploitation capabilities. Centered 
on the mean value of parent individuals, this operator regulates the generation of offspring by virtue 

of the probabilistic characteristics of normal distribution, which significantly increases the probability 
density of offspring distributed around the parent individuals. This means that the algorithm can 
inherit the excellent genes of parents more efficiently, concentrate computing resources on in-depth 

exploitation within the known high-quality regions, and thus enhance the exploitation efficiency of 
the local solution space. Meanwhile, the tail characteristics of normal distribution also reserve a 

certain probability of generating individuals far away from the parents. These individuals can break 
through the current search scope, introduce new evolutionary directions for the population, and avoid 
falling into local optima, thereby effectively strengthening the exploration capability of the global 

solution space. Such a probability distribution characteristic of high density in the vicinity and low 
density in the distance exactly makes up for the deficiency of the SBX operator in balancing 

exploration and exploitation, enabling the NDX operator to better balance the convergence speed and 

population diversity in complex optimization problems. 

An approach is proposed for the construction of the normal distribution crossover NDX operator. 

First, a random number z that follows a uniform distribution over the interval (0, 1) is generated. 

When z≤0.5: 
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When z>0.5: 
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Where 1,ip  and 2,ip  represent the information of Parent 1 and Parent 2 on the i rd chromosome, 

respectively; 1,x i  and 2,x i  denote the information of Offspring 1 and Offspring 2 on the i -th 

chromosome, respectively; and ( )0 1N ，  is a standard normal distribution random variable. 

Specifically, through the designed specific chromosome information transmission rules and random 
variable settings, the NDX crossover operator achieves effective inheritance of parental genes to 
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offspring, thus demonstrating significantly superior search capability compared with the conventional 

SBX crossover operator. 

(3) Dynamic Crowding Degree Operator 

In the reference-point-based niche selection process of the NSGA-III algorithm, when the niche 
individual count of a certain reference point is relatively small, the problem of excessive individual 

selection is prone to occur, which in turn exerts a negative impact on population evolution. Before 
the niche selection completes K  iteration, the individuals associated with the reference points with 

small niche counts are likely to be repeatedly selected into the next-generation population tS .The 

core reason is that although the niche count of the reference point is incremented by one each time an 

individual is selected from it, the updated count remains at a low level due to its initial count being 
far lower than that of other reference points. Thus, such reference points still become the priority 

candidates in the subsequent selection rule of priority to the minimum niche count. This phenomenon 
of continuously selecting individuals from the same reference point leads to two major drawbacks: 
first, it undermines population diversity, causing the population to be excessively concentrated in the 

objective region corresponding to this reference point while making it difficult for individuals in other 
regions to enter the next generation; second, it slows down the population convergence speed. 

Repeatedly selecting individuals with similar characteristics leads to the simplification of population 
evolution directions, hindering the rapid approximation to the Pareto optimal front and reducing the 

overall optimization efficiency. 

In this paper, a dynamic crowding distance operator is introduced, which actively regulates the spatial 
distribution characteristics of the population by adding a crowding distance judgment in the individual 

screening process. The core operation of this operator is embedded before the process of selecting 
individuals from the reference-point-associated set into the next generation. For all individuals 
associated with a specific reference point, the crowding distance between any two individuals in the 

set is first calculated. The obtained crowding distance is then compared with a preset threshold. If the 
crowding distance between two individuals is less than this threshold, one of them is randomly 

eliminated, so that the eliminated individual will not participate in the subsequent screening and 
evolution processes of the next-generation population. The calculation formula of its dynamic 

crowding distance is as follows: 

( ) ( )( )
m

2

i 1 i 2

i 1

f x f xD
=

= −                              (7) 

 

Where 1x  and 2x  are two population members; ( )i 1f x  is the original objective value of the i -th 

objective for individual 1x ; and ( )i 2f x  is the original objective value of the i -th objective for 

individual 2x . 

2.3. Algorithm Performance Verification 

In the performance verification of multi-objective optimization algorithms, the ZDT series and DTLZ 

series of functions are two types of widely recognized standard test functions [10]. Their covered 
objective dimensions and front characteristics can effectively verify the adaptability of the algorithms. 

To comprehensively evaluate the optimization performance of the improved algorithm proposed in 
this paper, these two types of functions are selected in a targeted manner to construct test scenarios. 
In the dual-objective optimization scenario, three functions including ZDT1, ZDT2 and ZDT3 from 

the ZDT series are adopted. The Pareto fronts of these functions correspond to convex, non-convex 
and discrete characteristics respectively, which can verify the search and convergence performance 

of the improved algorithm in different dual-objective spaces. In the tri-objective optimization scenario, 
the DTLZ2 function from the DTLZ series is selected. The high-dimensional objective characteristics 
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and continuous Pareto front of this function can further verify the exploration capability of the 
improved algorithm in complex solution spaces and the control effect of solution set distribution when 

the objective dimension is increased. 

As illustrated in Figs. 1–4, under the condition of the same number of iterations, the Pareto front 
curves generated by the improved NSGA-III algorithm demonstrate significantly better 

approximation to the true Pareto front than those generated by the traditional NSGA-III algorithm. In 
terms of the breadth of solution set coverage, the improved algorithm exhibits a marked improvement 
in the solution set performance across all objective dimensions, specifically reflected in more uniform 

coverage of the solution space and the avoidance of solution set vacancies in local regions. Meanwhile, 
the solution set shows a higher aggregation density in key regions, achieving in-depth exploitation of 

high-quality solution spaces. In summary, during the iterative process of the test functions, the 
improved NSGA-III algorithm simultaneously enhances the convergence accuracy and solution set 
diversity. The optimization effects of both aspects verify the effectiveness of the improvement 

strategies proposed in this study for boosting the search performance of the algorithm. 

 

(a) NSGA-III                   (b) Improved NSGA-III 

Figure 1. Fitting Curves of Pareto Fronts of NSGA-III Algorithms Before and After Improvement 

on ZDT1 

 

 

(a) NSGA-III                   (b) Improved NSGA-III 

Figure 2. Fitting Curves of Pareto Fronts of NSGA-III Algorithms Before and After Improvement 

on ZDT2 
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(a) NSGA-III                    (b) Improved NSGA-III 

Figure 3. Fitting Curves of Pareto Fronts of NSGA-III Algorithms Before and After Improvement 

on ZDT3 

 

 

(a) NSGA-III                     (b) Improved NSGA-III 

Figure 4. Fitting Surfaces of Pareto Fronts of NSGA-III Algorithms Before and After Improvement 

on DTLZ2 

Based on the comprehensive test results of the ZDT1, ZDT2 and ZDT3 dual-objective functions as 

well as the DTLZ2 tri-objective function, the improved NSGA-III algorithm is significantly superior 
to the original traditional algorithm in terms of convergence and solution set distribution uniformity.  

In the tests on ZDT1-ZDT2-ZDT3 functions, the Pareto front curves generated by the improved  
algorithm have a higher degree of fitting with the true Pareto fronts, and can more accurately conform 
to the distribution trend of the theoretical optimal solutions. In the three-dimensional test scenario of 

the DTLZ2 function, the solution set of the traditional algorithm not only has an obvious gap from 
the spherical surface of the true Pareto front, but also deviates from the spherical distribution in some 

regions. In contrast, the solution set of the improved algorithm is not only more uniformly distributed 
over the entire spherical front without local aggregation or sparsity, but also closely adheres to the 
true spherical surface as a whole. These results fully verify the effectiveness of the proposed 

improvement strategies in enhancing the high-dimensional optimization capability of the algorithm. 

3. MULTI-OBJECTIVE MAGNETIC CIRCUIT OPTIMIZATION 

3.1. Construction of Optimization Model Equations 

(1) Optimization Objectives and Variables 

The core feature that distinguishes the permanent magnet DC brushless coreless motor from 

traditional motors lies in its coreless structure. Although this structure offers the advantage of cogging 
torque elimination, it also leads to shortcomings in magnetic circuit performance. Especially in 
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aerospace applications, there is a demand to balance high driving capability, high torque smoothness, 
and high magnetic energy utilization within a limited volume. Therefore, the establishment of 
magnetic circuit optimization objectives must be closely integrated with structural characteristics and 

application requirements. In this paper, the optimization objectives are defined as maximizing the 
torque coefficient under rated load, minimizing torque ripple, and minimizing the magnetic leakage 

coefficient. 

Combined with the theoretical structural parameters of the motor, the relevant variables of the 
objective function are defined. The motor design dimensions and the value ranges of the variables are 

shown in Table 1. 

Table 1. Motor Design Dimensions and Variable Value Ranges 

variables Name Design dimensions Variable range 

1x  Inner diameter of the casing 18mm 17.5-18.5mm 

2x  Magnet outer diameter 14mm 13-15mm 
3x  Magnet inner diameter 5mm 4-6mm 

4x  Magnet axial length 19mm 18-20mm 

5x  Axial length of the casing 25mm 24-26mm 
6x  Winding inner diameter 15mm 14.5-15.5mm 
7x  Winding outer diameter 17mm 16.5-17.5mm 
8x  Winding pitch 25.13mm 24.32-25.92mm 
9x  Winding axial length 24mm 23.5-24.5mm 

10x  Arc coefficient 065 0.65-0.90 

11x  Conductor diameter 0.117mm 0.085-0.158mm 

12x  Total number of winding turns 300 200-1000 

 

(2) Construction of the Optimization Model 

Based on the sensitivity analysis with Latin hypercube sampling [11], three key indicators, namely 

torque coefficient TK , torque ripple rT , and magnetic leakage coefficient  , were calculated for the 

sampling points. A threshold of 0.17 was set as the criterion for the comprehensive sensitivity of each 

design variable, and the inner diameter of the motor housing, inner diameter of the magnet, winding 
pitch, and wire diameter were selected as decision variables for multi-objective optimization. The 

central composite design (CCD) was adopted to generate sampling points, with 5 repetitions at the 
central point, resulting in a total of 30 groups of basic experiments. Corresponding torque coefficients, 
torque ripples, and magnetic leakage coefficients were obtained via Ansys Maxwell finite element 

simulation. The experimental data were analyzed using Design-Expert software, and a response 
surface model was established based on statistical principles [12]. Through regression analysis of the 

simulation results, a polynomial function was used to map the relationship between the optimization 
variables and optimization objectives, thus deriving the corresponding response surface model. For 
this experiment, a quadratic regression equation was employed for fitting calculation, and the specific 

mathematical model is as follows: 

 

( ) 2
i i i j0

1 1 1 1,

x x x x
m m m m

i ii ij

i i i j j i

F x     
= = = = 

= + + + +                         (8) 

 

Where ( )F x  is the objective value, 0  is the regression coefficient of the model, m  is the number 

of variables, iix  is the linear term, 
2

iiix  is the quadratic term, i jijx x  is the interaction term, and 

  is the error term. 
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Three second-order response surface equations are obtained after collation, namely the response 

surface model equation for torque coefficient: 

 

2 2 2

1 3 8 11 1 8 1 11

2
3 8 3 11 8 11 1 3 8 11

5.78 0.1308x 0.1933x 0.1875x 2.83x 0.0263x x 0.0562x x

0.0088x x 0.0962x x 0.08x x 0.0669x 0.0931x 0.0506x 0.0919x

TK = + − − − + + −

+ − − − − − +
    (9) 

 

The response surface model equation for torque ripple: 

 

2 2 2 2

1 3 8 11 1 3 1 8 1 11

3 8 3 11 8 11 1 3 8 1

r

1

67 0.7917x 1.13x 1.12x 9.13x 0.1875x x 0.1875x x 0.1875x x

0.0625x x 0.3125x x 0.3125x x 0.3021x 0.1771x 0.0729x 1.32x

T + − − + − + − +

− + − − − + +

=
   (10) 

 

And the response surface model equation for magnetic leakage coefficient: 

 

2 2 2 2

1 3 8 1 3 1 8 3 8

1 3 8 11

1.09 0.016x 0.0062x 0.0059x 0.0011x x 0.005x x 0.0006x x

0.001x 0.0006x 0.0009x 0.0008x

 = + + − − − − +

+ + + +
      (11) 

 

Where 1x , 3x , 8x , and 11x  are the inner diameter of the motor housing, inner diameter of the 

magnet, winding pitch, and wire diameter, respectively. 

3.2. Optimization Based on the Improved NSGA-Ⅲ 

The flowchart for multi-objective optimization of the magnetic circuit parameters of coreless motors 

using the improved NSGA-III algorithm is shown in Fig. 5. First, based on the initialization of the 
parent population, the optimization objectives, variables, and surrogate model are defined. Second, 
the adaptive crossover and mutation mechanism is introduced in the selection, crossover, and 

mutation phases; meanwhile, the normal distribution crossover NDX operator is adopted to generate 
the offspring population. The dynamic crowding degree operator is incorporated into the niche 

selection and calculation of reference points, thus ultimately achieving the multi-objective 

optimization of the magnetic circuit parameters. 



 

153 

 

Figure 5. Flowchart of the Improved NSGA-III Algorithm Optimization 

The algorithm is configured with a population size of 91, a maximum number of iterations of 100, 4 
optimization decision variables, and 3 optimization objectives. The simulation analysis and iterative 

solution are completed on the MATLAB platform, and the final Pareto optimal front solution set 

corresponding to the fitness function is obtained, as shown in Fig. 6. 

 

Figure 6. Pareto frontier chart 

When the Improved NSGA-III algorithm is applied to solve such multi-objective optimization 

problems, it generates a set of Pareto optimal solution sets satisfying the non-dominated property 
after each iteration, rather than directly outputting a unique global optimal solution as in single-

objective optimization. Therefore, after the algorithm runs to the maximum number of iterations, the 
corresponding optimal decision variable values and the optimized values of each objective function 

are determined through trade-off analysis, as shown in Table 2. 
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Table 2. Optimized variables and target values 

decision variable value Optimization Goal Value 

Inner diameter of the casing 18.2mm moment coefficient 5.97 

Magnet inner diameter 4mm Torque fluctuation 53.15% 

Winding pitch 25.29mm Magnetic leakage coefficient 1.05 

Conductor diameter 0.094mm   

4. SIMULATION EXPERIMENT AND DISCUSSION 

4.1. Simulation Experiment Results 

To verify the magnetic circuit optimization effect based on the Improved NSGA-III algorithm, a 
three-dimensional finite element simulation model of the permanent magnet DC coreless motor was 

established on the Ansys Maxwell platform. The model adopted a transient magnet ic field solver, 
with copper as the winding material, N52H neodymium iron boron as the permanent magnet material, 
and DT4C pure iron as the motor housing material. The balloon boundary was selected as the 

boundary condition, and the mesh was locally refined in the air gap and winding regions to balance 

the calculation accuracy and efficiency. 

Under the rated operating conditions (24V, 3800r/min), a simulation comparison was conducted on 
the motor before and after optimization. The initially designed parameters were adopted for the motor 
prior to optimization, while the values of decision variables shown in Table 2 were selected for the 

optimized motor. Identical simulation conditions and boundary settings were applied to eliminate 

external interference. 

The simulation results are shown in Table 3. After optimization, the torque coefficient increased from 
5.78mNm/A to 5.95mNm/A, with an increase of approximately 29%; the torque ripple decreased 
from 67% to 58%, with a reduction of approximately 13%; the magnetic leakage coefficient decreased 

from 1.09 to 1.05, with a reduction of approximately 37%. 

Table 3. Comparison of Optimization Goals 

Parameter Name Before After 

moment coefficient 5.78mNm/A 5.95mNm/A 

Torque fluctuation 67% 58% 

Magnetic leakage coefficient 1.09 1.05 

 

Furthermore, a further observation from the comparison curves in Figs. 7 indicates that: although the 
peak electromagnetic torque decreases from 11.90mNm to 7.91mNm after optimization, the 

fluctuation range is significantly reduced, which means that the motor output is more stable and 
conducive to reducing vibration and noise; the peak current is obviously suppressed, dropping from 
2.06A to 1.33A, thus lowering the system control load; the winding copper loss decreases from 2.86W 

to 1.18W, with a reduction of 38.3%, which directly reflects the inhibitory effect of wire diameter 
and winding layout optimization on resistance loss and helps reduce temperature rise; the harmonic 

content of the air-gap magnetic density curve is reduced and the distribution tends to be more uniform, 
demonstrating that the magnetic circuit design effectively suppresses magnetic leakage and local 

saturation. 
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(a) Electromagnetic torque              (b) Drive current 

 

(c) Winding Loss                (d) Air gap magnetic flux density 

Figure 7. Comparison curves of motor parameters before and after optimization 

Table 4 further summarizes the comprehensive performance comparison under load conditions, 
where the motor efficiency is increased from 89% to 93%, verifying the effectiveness of the 

optimization measures in improving the energy conversion efficiency. 

Table 4. Comparison of Main Parameters for Motor Simulation 

Parameter Name Before After 

Electromagnetic torque 11.90mNm 7.91mNm 

Drive current 2.06A 1.33A 

Winding Loss 2.86W 1.18W 

Efficiency 89% 93% 

 

In summary, this study adopts the improved NSGA-III algorithm to complete the multi-objective 
optimization of the magnetic circuit of the coreless motor, which effectively enhances the air-gap 

magnetic density, improves the uniformity of magnetic circuit d istribution, reduces magnetic density 

distortion, and achieves the comprehensive improvement of the motor's core performance. 

4.2. Discussion 

Aiming at the limitations of the traditional NSGA-III algorithm in the high-dimensional optimization 
of motor magnetic circuits, namely fixed crossover and mutation parameters, unbalanced exploration 

and exploitation of genetic operators, and individual redundancy in niche selection, this study 
proposes a triple improvement strategy consisting of a dynamic adaptive crossover and mutation 

mechanism, a normal distribution crossover NDX operator, and a dynamic crowding degree operator. 
This strategy achieves a balance between the global exploration and local exploitation of the 
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algorithm and improves the uniformity and diversity of the solution set. Verified by the ZDT and 
DTLZ2 test functions, the improved algorithm exhibits a significantly higher fitting degree of the 
Pareto front, with gap-free solution set coverage in dual-objective scenarios and more uniform 

distribution in high-dimensional scenarios. These results demonstrate the effectiveness of the 
improvement strategy in enhancing the algorithm's convergence accuracy and solution set diversity, 

providing reliable support for the multi-objective optimization of motor magnetic circuits. 

Based on the three-dimensional finite element simulation model established in Ansys Maxwell, the 
motor performance indicators before and after optimization were compared under rated operating 

conditions, which verified the engineering value of the improved  algorithm. After optimization, the 
motor torque coefficient is increased by 29%, indicating that the optimization of magnetic circuit 

structural parameters effectively reduces the magnetic resistance of the main magnetic flux path and 
improves the conversion efficiency; the torque ripple is reduced by 13%, which shows that the 
optimization of winding pitch and wire diameter suppresses end magnetic leakage and magnetic 

density distortion, thus improving output stability; the magnetic leakage coefficient is reduced by 
37%, reflecting that parameter matching optimizes the magnetic flux path, reduces magnetic energy 

loss, and improves the utilization rate of permanent magnets. In addition, the motor driving current 
is reduced by 35%, and the winding copper loss is reduced by 38.3%, which reflects the inhibitory 
effect of wire diameter optimization on resistance loss; the motor efficiency is increased to 93%, 

achieving an improvement in energy conversion efficiency and providing a guarantee for the 

operation of the motor under extreme aerospace conditions. 

In summary, the improved NSGA-III algorithm enhances the accuracy and effectiveness of multi-
objective optimization through mechanism innovation. The dynamic adaptive crossover and mutation 
mechanism strengthens the algorithm's global search capability in the high-dimensional objective 

space of motor magnetic circuits, ensuring that the algorithm breaks through the local optimal trap 
and explores the optimal matching combination of key parameters; the NDX operator's ability to 
balance global exploration and local exploitation enables the algorithm to accurately capture the 

optimal parameter values and achieve comprehensive performance improvement; the uniform 
solution set characteristic of the dynamic crowding degree operator allows the algorithm to find the 

optimal trade-off point among multiple conflicting objectives. The magnetic circuit parameters 
obtained by the optimization improve the magnetic circuit characteristics of the coreless motor, 

providing a feasible optimization scheme for the motors used in aerospace actuator systems. 

5. CONCLUSION 

Aiming at the problems that traditional algorithms are prone to fall into local optima and generate 

uneven solution sets in the multi-objective optimization of magnetic circuits for permanent magnet 
DC coreless motors in the aerospace field, this paper proposes an improved NSGA-III algorithm 

integrated with a dynamic adaptive crossover and mutation mechanism, a normal distribution 
crossover NDX operator, and a dynamic crowding degree operator. Verified by the ZDT series and 
DTLZ2 test functions, the algorithm exhibits significantly superior high-dimensional space search 

capability and Pareto solution set uniformity compared with the traditional NSGA-III. Taking the 
maximization of torque coefficient and the minimization of torque ripple as well as magnetic leakage 

coefficient as the optimization objectives, combined with the decision variables screened via 
sensitivity analysis, a high-precision surrogate model established based on the response surface 
methodology was embedded into the improved algorithm for optimization. Ansys Maxwell 

simulation results show that after optimization, the motor torque coefficient is increased by 29%, the 
torque ripple is reduced by 13%, and the magnetic leakage coefficient is decreased by 37%. 

Meanwhile, the motor current, copper loss and efficiency are improved synchronously, providing a 

high-performance optimization scheme for aerospace actuator systems. 
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