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ABSTRACT

Aiming at the problems that multi-objective optimization algorithms are prone to fall into local optima
and yield uneven solution set distributions in the magnetic circuit optimization of permanent magnet
DC coreless motors for the aerospace field, an improved NSGA-III multi-objective optimization
algorithm is proposed. This algorithm incorporates a dynamic adaptive crossover and mutation
mechanism, a normal distribution crossover operator, and a dynamic crowding degree operator,
which effectively enhances the global search capability in high-dimensional objective spaces and
the distribution uniformity of the Pareto solution set, thus solving the problems that traditional
algorithms tend to fall into local optima and suffer from insufficient solution set diversity in multi-
objective collaborative optimization. Taking the maximization of torque coefficient, minimization of
torque ripple, and minimization of magnetic leakage coefficient of the coreless motor as the core
optimization objectives, a high-precision surrogate model between the objective functions and
decision variables was established based on the response surface methodology, and embedded
into the improved NSGA-III algorithm to realize the multi-objective optimization of magnetic circuit
parameters. Simulation results show that after optimization, the motor torque coefficientis increased
by 29%, the torque ripple is reduced by 13%, and the magnetic leakage coefficientis decreased by
37%, with comprehensive performance indicators improved significantly, indicating favorable
engineering application value.

KEYWORDS

Coreless Motor; Magnetic Circuit Optimization; Improved NSGA-III; Multi-objective Optimization

1. INTRODUCTION

As a type of micro special motor with a coreless rotor structure, the permanent magnet DC coreless
motor has become a core actuator in aerospace steering gear systems due to its unique structural
advantages[1]. This motor type completely eliminates the hysteresis loss and eddy current loss caused
by the rotor core, thus significantly improving motor energy efficiency and control sensitivity. Its low
moment of inertia can meet the dynamic operating requirements of steering gear systems, such as
frequent start-stop and rapid commutation, enabling delay-free response and ensuring the accuracy
and timeliness of aircraft attitude adjustment. The low vibration and low noise advantages brought
by the coreless structure enhance the operational stability of the steering gear system under extreme
environments, effectively avoiding component wear or performance degradation caused by vibration
in traditional motors. However, its special coreless structure also leads to increased magnetic circuit
reluctance and obvious magnetic leakage, which in turn affects the stability of torque output and
energy conversion efficiency [2]. Traditional magnetic circuit optimization methods for motors
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mostly rely on engineering experience-based trial-and-error or single-objective optimization
approaches, which are difficult to systematically address the trade-off between multiple conflicting
objectives [3]. Therefore, it is necessary to introduce efficient multi-objective optimization methods

to improve the comprehensive performance of motors.

At present, mainstream algorithms in the research of motor multi-objective optimization [4-6] include
the Non-dominated Sorting Genetic Algorithm 11 (NSGA-II), the Multi-Objective Particle Swarm
Optimization (MOPSO), and the Multi-Objective Evolutionary Algorithm based on Decomposition
(MOEA/D). Benefiting from their mature principles and easy implementation, these algorithms have
been widely applied to parameter optimization of general industrial motors, covering medium and
low-dimensional optimization scenarios with no more than three objectives. Among them, MOPSO
has weak global search capability and is prone to falling into local optima, often resulting in
insufficient diversity of solution sets and failure to cover schemes with different performance trade-
offs. MOEA/D decomposes multi-objective problems relying on weight vectors; its decomposition
accuracy decreases significantly in the case of strong nonlinear coupling. When the number of
optimization objectives exceeds four, it is difficult to achieve uniform distribution of weight vectors,
leading to insufficient coverage of optimal solutions. The core limitation of NSGA-II [7] lies in high-
dimensional objective scenarios. With the increase in the number of motor optimization objectives,
the proportion of non-dominated solutions in the population rises sharply, making it difficult to
effectively distinguish the quality of solutions. Meanwhile, the calculation of crowding distance loses
effective discriminability in high-dimensional spaces, failing toensure the uniformity of solution sets.
As a result, the obtained optimal solutions may only cover partial objective directions and miss key
performance combinations.

The Non-dominated Sorting Genetic Algorithm NSGA-III [8-9] is a multi-objective optimization
algorithm proposed by Deb's team based on the improvement of NSGA-I11. Its core is to address the
shortcomings of NSGA-II in high-dimensional optimization scenarios. By introducing the reference
point mechanism, adaptive normalization strategy, and niche selection strategy, NSGA-I11 is well
adapted to high-dimensional objective optimization scenarios, balances the distribution of multiple
solution sets in high-dimensional spaces, avoids local aggregation or regional gaps, and ultimately
achieves accurate exploration of the Pareto optimal front. Nevertheless, the standard NSGA-I11 still
has some drawbacks, such as fixed crossover and mutation parameters, limited exploration capability
of genetic operators, and the tendency of niche selection to cause repeated selection of individuals.
Especially in the magnetic circuit optimization of motors with multiple parameters, there is still room
for improvement in its global search efficiency and convergence accuracy.

To solve the above problems, this study proposes an improved NSGA-111 algorithm to enhance its
applicability and performance in the multi-objective magnetic circuit optimization of coreless motors.
The improvement strategies mainly include the following aspects: first, a dynamic adaptive crossover
and mutation mechanism is introduced, which can be dynamically adjusted according to the
characteristics of the optimization problem and the evolutionary state of the population; second, the
normal distribution crossover operator is adopted toreplace the traditional simulated binary crossover,
improving the diversity of offspring generation and the exploration capability of the global solution
space; third, a dynamic crowding degree operator is introduced to regulate the spatial distribution
characteristics of the population. Taking the maximization of motor torque coefficient, the
minimization of torque ripple and the minimization of magnetic leakage coefficient as the core
optimization objectives, a high-precision surrogate model between the objective functions and
decision variables (including motor housing inner diameter, magnet inner diameter, winding pitch
and wire diameter) is established based on the response surface methodology. This model is then
embedded into the improved NSGA-I11algorithm to realize multi-objective optimization of magnetic
circuit parameters and obtain the Pareto optimal solution set. Finally, the feasibility and engineering
application value of the proposed optimization scheme are verified through finite element simulation.
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2. NSGA-III ALGORITHM AND ITS IMPROVEMENT

2.1. Basic Principles of the NSGA-III Algorithm

NSGA-Illisbasically consistent withNSGA-11inthe operations of population evolution initialization,
parent and offspring population combination, and non-dominated sorting. Its core differences lie in
the selection, crossover and mutation strategies during the offspring population generation phase. It
mainly introduces hyperplane reference point construction, population adaptive normalization, the
mapping relationship between population individuals and reference points, and niche preservation
operations [7]. The specific implementation process is as follows:

(1) Non-dominated ranking classification serves as the basis for population screening, with its core
objective being to select a candidate set of appropriate size from the merged population, so as to lay
the groundwork for subsequent refined selection. If the number of individuals in the merged

population S, is exactly equal to the preset population size N, population S; will be directly
adopted as the parent population P.,; of the next generation. If the size of population S, exceeds
N, a stepwise screening process based on non-dominated ranks is required. First, the non-dominated
individuals of the top t—1 ranks are incorporated into the parent population P, of the next
P

t+1

generation. At this point, there are still K=N-— vacancies in population P,,. Finally, it is
necessary to further select K optimal individuals from the non-dominated individual set F, of the

L-th rank to supplement population P, thus completing the preliminary scale control.

(2) Determination of hyperplane reference points for constructing a uniform distribution in the high-
dimensional space. Given the preset population size, the dimension of the objective function, and the
number of partitions in the objective space, a hyperplane is constructed on the basis of reference
points, and its mathematical expression is as follows:

H = Cl&w—l 1)

(3) Adaptive normalization of the population. The normalization formula for each individual in the
population is expressed as follows:

O LI R P PR @)

Where fi(X) is the original objective value of the i-nd objective; z™ s the global minimum

value of the i-th objective; ; is the intercept of the i-th objective; fin(X) is the normalized

M
objective value of the i-th objective forthe N -thindividual, which satisfies the condition z fi" =1,

i=1
(4) Establishing the mapping relationship between population individuals and reference points. First,
with the origin as the starting point, reference lines extending from the origin to each reference point
are constructed, and all such reference lines lie on the established hyperplane. The perpendicular
distance from each individual in population S, to each reference line is calculated, and the reference
point corresponding to the minimum distance is defined as the associated reference point of this
individual, which ensures that the individual is highly aligned with the objective direction of the
reference point.
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(5) Niche preservation operation. The total number of individuals with a Pareto rank lower than N
is equal to P.;, which is the total number of individuals in the top L-1 ranks. However, the total
number of individuals in the top L Pareto ranks exceeds N .Hence, K individuals are to be selected
from the population F, with a Pareto rank of L, among which K=N-PF_,.

A reference point may have no associated individuals, or be associated with one or more individuals,
where pj denotes the number of individuals associated with the j-th reference point. The niche
preservation operation first counts the number of associated individuals for each reference point j,
and prioritizes the set of reference points with the smallest number of associated individuals; if
multiple reference points have the same number of associated individuals, one is selected randomly.
The specific selection logic is as follows: if pj=0, no individuals corresponding to this reference point
are selected; if p>1, one associated individual is randomly selected and incorporated into P,,;, and
the count of pj is incremented by one. The above selection process is repeated K times until the size
of P., reaches N, thus completing the entire population selection.

In summary, the population selection strategy of NSGA-I11 establishes reference points in the
objective space and builds the mapping relationship between population individuals and these
reference points, then employs niche preservation to maintain population diversity. This approach
addresses the problem of uneven distribution of solution sets in high-dimensional spaces, ensures the
diversity of solutions, and ultimately achieves uniform coverage of the Pareto optimal front in the
objective space.

2.2. An Improved NSGA-III Algorithm

(1) Dynamic Adaptive Adjustment

The crossover probability and mutation probability adopted in the traditional NSGA-111 algorithm
follow a fixed pattern. The static parameter configuration fails toadapt to the requirements of different
stages in the optimization process. Specifically, the parameter settings may be overly conservative
when strong exploration capability is required in the early stage of optimization, while they may turn
out to be excessively radical when strong exploitation capability is needed in the later stage. This
parameter rigidity is prone to cause search stagnation, making the algorithm unable to adaptively
adjust its exploration and exploitation capabilities in both the early and late stages of evolution.

In this paper, an adaptive crossover and mutation mechanism is introduced. The core idea is to
dynamically adjust the crossover probability and mutation probability according to the characteristics
of the optimization problem and the evolutionary state of the population, instead of using fixed values.
Through the dynamic adaptation of the strategy, the population is prevented from falling into local
optima due to insufficient diversity in the early stage of evolution, or from experiencing a decline in
convergence efficiency due to excessive randomization in the later stage. The specific setting of the
probabilities is as follows:

Gl = Glmax (1_ % X lj (3)

1max T

Where G, denotes the crossover probability; G, is the maximum crossover probability; Gy, is

the minimum crossover probability; t represents the current number of iterations; and T is the
maximum number of iterations.

G min t
GZ = GZmax (1_ GZ X?J (4)
2max
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Where G, denotes the mutation probability; G,... is the maximum mutation probability; and
G,nin is the minimum mutation probability.

(2) Enhancement of Genetic Operators

The NSGA-III algorithm adopts the conventional simulated binary crossover SBX operator. During
gene recombination, the generation mode of offspring individuals is relatively fixed, with limited
fluctuations mainly around the gene range of parent individuals. This makes it difficult to break
through the constraints of the local search space, leading to a gradual convergence of the population
during the evolutionary process. Particularly in high-dimensional objective spaces or multimodal
problems, such convergence will rapidly narrow the distribution range of solutions, trapping the
algorithm in local optima and preventing it from exploring a broader range of potential optimal
solutions.

Compared with the conventional SBX operator, the normal distribution crossover NDX operator
demonstrates remarkable advantages in balancing exploration and exploitation capabilities. Centered
on the mean value of parent individuals, this operator regulates the generation of offspring by virtue
of the probabilistic characteristics of normal distribution, which significantly increases the probability
density of offspring distributed around the parent individuals. This means that the algorithm can
inherit the excellent genes of parents more efficiently, concentrate computing resources on in-depth
exploitation within the known high-quality regions, and thus enhance the exploitation efficiency of
the local solution space. Meanwhile, the tail characteristics of normal distribution also reserve a
certain probability of generating individuals far away from the parents. These individuals can break
through the current search scope, introduce new evolutionary directions for the population, and avoid
falling into local optima, thereby effectively strengthening the exploration capability of the global
solution space. Such a probability distribution characteristic of high density in the vicinity and low
density in the distance exactly makes up for the deficiency of the SBX operator in balancing
exploration and exploitation, enabling the NDX operator to better balance the convergence speed and
population diversity in complex optimization problems.

An approach is proposed for the construction of the normal distribution crossover NDX operator.
First, a random number z that follows a uniform distribution over the interval (0, 1) is generated.
When z<0.5:

_PLit Py, - 1.481x(py—py, XN (0.1)

v 2 ®)
_ Pt P2 1-481><( Pri— P2 )X| N (0,1)|
X2imm5 2
When z>0.5:
PLitPa 1.481x( py;— Py XN (0.1)]
v 2 ©)
Py L1.481><( pLi— P2 XN (0.1)
sy 2

Where P.ii and P2 represent the information of Parent 1 and Parent 2 on the ird chromosome,
respectively; Xii and X,; denote the information of Offspring 1 and Offspring 2 on the i -th

chromosome, respectively; and |N(0’1) is a standard normal distribution random variable.

Specifically, through the designed specific chromosome information transmission rules and random
variable settings, the NDX crossover operator achieves effective inheritance of parental genes to
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offspring, thus demonstrating significantly superior search capability compared with the conventional
SBX crossover operator.

(3) Dynamic Crowding Degree Operator

In the reference-point-based niche selection process of the NSGA-III algorithm, when the niche
individual count of a certain reference point is relatively small, the problem of excessive individual
selection is prone to occur, which in turn exerts a negative impact on population evolution. Before
the niche selection completes K iteration, the individuals associated with the reference points with
small niche counts are likely to be repeatedly selected into the next-generation population S,.The

core reason is that although the niche count of the reference point is incremented by one each time an
individual is selected from it, the updated count remains at a low level due to its initial count being
far lower than that of other reference points. Thus, such reference points still become the priority
candidates in the subsequent selection rule of priority to the minimum niche count. This phenomenon
of continuously selecting individuals from the same reference point leads to two major drawbacks:
first, it undermines population diversity, causing the population to be excessively concentrated in the
objective region corresponding tothis reference point while making it difficult for individuals in other
regions to enter the next generation; second, it slows down the population convergence speed.
Repeatedly selecting individuals with similar characteristics leads to the simplification of population
evolution directions, hindering the rapid approximation to the Pareto optimal front and reducing the
overall optimization efficiency.

In this paper, a dynamic crowding distance operator is introduced, which actively regulates the spatial
distribution characteristics of the population by addingacrowding distance judgment in the individual
screening process. The core operation of this operator is embedded before the process of selecting
individuals from the reference-point-associated set into the next generation. For all individuals
associated with a specific reference point, the crowding distance between any two individuals in the
set is first calculated. The obtained crowding distance is then compared with a preset threshold. If the
crowding distance between two individuals is less than this threshold, one of them is randomly
eliminated, so that the eliminated individual will not participate in the subsequent screening and
evolution processes of the next-generation population. The calculation formula of its dynamic
crowding distance is as follows:

D:\/i(‘fi(xl)—fi(xz)‘z) (7)

i=1

Where X; and X, are two population members; fi(Xl) is the original objective value of the i-th
objective for individual X;: and f; (Xz) is the original objective value of the i-th objective for
individual X,.

2.3. Algorithm Performance Verification

In the performance verification of multi-objective optimization algorithms, the ZDT series and DTLZ
series of functions are two types of widely recognized standard test functions [10]. Their covered
objective dimensions and front characteristics can effectively verify the adaptability of the algorithms.
To comprehensively evaluate the optimization performance of the improved algorithm proposed in
this paper, these two types of functions are selected in a targeted manner to construct test scenarios.
In the dual-objective optimization scenario, three functions including ZDT1, ZDT2 and ZDT3 from
the ZDT series are adopted. The Pareto fronts of these functions correspond to convex, non-convex
and discrete characteristics respectively, which can verify the search and convergence performance
of the improved algorithm in different dual-objective spaces. In thetri-objective optimization scenario,
the DTLZ2 function fromthe DTLZ series is selected. The high-dimensional objective characteristics
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and continuous Pareto front of this function can further verify the exploration capability of the
improved algorithm in complex solution spaces and the control effect of solution set distribution when
the objective dimension is increased.

As illustrated in Figs. 1-4, under the condition of the same number of iterations, the Pareto front
curves generated by the improved NSGA-III algorithm demonstrate significantly better
approximation to the true Pareto front than those generated by the traditional NSGA-I11 algorithm. In
terms of the breadth of solution set coverage, the improved algorithm exhibits a marked improvement
in the solution set performance across all objective dimensions, specifically reflected in more uniform
coverage of the solution space and the avoidance of solution set vacancies in local regions. Meanwhile
the solution set shows a higher aggregation density in key regions, achieving in-depth exploitation of
high-quality solution spaces. In summary, during the iterative process of the test functions, the
improved NSGA-II1 algorithm simultaneously enhances the convergence accuracy and solution set
diversity. The optimization effects of both aspects verify the effectiveness of the improvement
strategies proposed in this study for boosting the search performance of the algorithm.
ZDT1 ZDTI1
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Figure 1. Fitting Curves of Pareto Fronts of NSGA-I11 Algorithms Before and After Improvement
on ZDT1
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Figure 2. Fitting Curves of Pareto Fronts of NSGA-I11 Algorithms Before and After Improvement
on ZDT2
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Figure 3. Fitting Curves of Pareto Fronts of NSGA-III Algorithms Before and After Improvement
on ZDT3
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Figure 4. Fitting Surfaces of Pareto Fronts of NSGA-II1 Algorithms Before and After Improvement
on DTLZ2

Based on the comprehensive test results of the ZDT1, ZDT2 and ZDT3 dual-objective functions as
well as the DTLZ2 tri-objective function, the improved NSGA-I11 algorithmis significantly superior
to the original traditional algorithm in terms of convergence and solution set distribution uniformity.
In the tests on ZDT1-ZDT2-ZDT3 functions, the Pareto front curves generated by the improved
algorithm have a higher degree of fitting with the true Pareto fronts, and can more accurately conform
to the distribution trend of the theoretical optimal solutions. In the three-dimensional test scenario of
the DTLZ2 function, the solution set of the traditional algorithm not only has an obvious gap from
the spherical surface of the true Pareto front, but also deviates from the spherical distribution in some
regions. In contrast, the solution set of the improved algorithm is not only more uniformly distributed
over the entire spherical front without local aggregation or sparsity, but also closely adheres to the
true spherical surface as a whole. These results fully verify the effectiveness of the proposed
improvement strategies in enhancing the high-dimensional optimization capability of the algorithm.

3. MULTI-OBJECTIVE MAGNETIC CIRCUIT OPTIMIZATION
3.1. Construction of Optimization Model Equations

(1) Optimization Objectives and Variables

The core feature that distinguishes the permanent magnet DC brushless coreless motor from
traditional motors lies in its coreless structure. Although this structure offers the advantage of cogging
torque elimination, it also leads to shortcomings in magnetic circuit performance. Especially in
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aerospace applications, there is a demand to balance high driving capability, high torque smoothness,
and high magnetic energy utilization within a limited volume. Therefore, the establishment of
magnetic circuit optimization objectives must be closely integrated with structural characteristics and
application requirements. In this paper, the optimization objectives are defined as maximizing the
torque coefficient under rated load, minimizing torque ripple, and minimizing the magnetic leakage
coefficient.

Combined with the theoretical structural parameters of the motor, the relevant variables of the
objective function are defined. The motor design dimensions and the value ranges of the variables are
shown in Table 1.

Table 1. Motor Design Dimensions and Variable VValue Ranges

variables Name Design dimensions Variable range
X1 Inner diameter of the casing 18mm 17.5-18.5mm
X2 Magnet outer diameter 14mm 13-15mm
X3 Magnet inner diameter 5mm 4-6mm
X4 Magnet axial length 19mm 18-20mm
X5 Axial length of the casing 25mm 24-26mm
Xe Winding inner diameter 15mm 14.5-15.5mm
X7 Winding outer diameter 17mm 16.5-17.5mm
X8 Winding pitch 25.13mm 24.32-25.92mm
X9 Winding axial length 24mm 23.5-24.5mm
X10 Arc coefficient 065 0.65-0.90
X11 Conductor diameter 0.117mm 0.085-0.158mm
X12 Total number of winding turns 300 200-1000

(2) Construction of the Optimization Model

Based on the sensitivity analysis with Latin hypercube sampling [11], three key indicators, namely
torque coefficient K;, torque ripple T, and magnetic leakage coefficient A ,were calculated for the
sampling points. A threshold of 0.17 was set as the criterion for the comprehensive sensitivity of each
design variable, and the inner diameter of the motor housing, inner diameter of the magnet, winding
pitch, and wire diameter were selected as decision variables for multi-objective optimization. The
central composite design (CCD) was adopted to generate sampling points, with 5 repetitions at the
central point, resulting in a total of 30 groups of basic experiments. Corresponding torque coefficients,
torque ripples, and magnetic leakage coefficients were obtained via Ansys Maxwell finite element
simulation. The experimental data were analyzed using Design-Expert software, and a response
surface model was established based on statistical principles [12]. Through regression analysis of the
simulation results, a polynomial function was used to map the relationship between the optimization
variables and optimization objectives, thus deriving the corresponding response surface model. For
this experiment, a quadratic regression equation was employed for fitting calculation, and the specific
mathematical model is as follows:

F(X):ﬂo"_iﬂi)(i_'_i iixi2+i i BiXiXi+ & (8)

i=1 =1, j=i

Where F(X) is the objective value, B, is the regression coefficient of the model, M is the number

of variables, BXi is the linear term, B;Xi’ is the quadratic term, 5;XXi is the interaction term, and
€ is the error term.
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Three second-order response surface equations are obtained after collation, namely the response
surface model equation for torque coefficient:

K; =+5.78-0.1308x1—0.1933x3—0.1875xs + 2.83X11+ 0.0263X1Xs — 0.0562X1X11

+0.0088x3xs — 0.0962x3X11 — 0.08XsX1 — 0.0669x1> —0.0931x3* —0.0506Xs” + 0.0919X11° ®)
The response surface model equation for torque ripple:
T, =+67-0.7917x1—-1.13x3+1.12X8 — 9.13X11+ 0.1875X1X3— 0.1875X1Xs + 0.1875X1X11 (10)
—0.0625x3xs +0.3125X3X11— 0.3125xsX11 — 0.3021x1* — 0.1771x3* + 0.0729xs* +1.32X11*
And the response surface model equation for magnetic leakage coefficient:
A =+1.09+0.016x1—0.0062x3—0.0059%xs — 0.0011x1x3—0.005x1Xs + 0.0006X3Xs 1)

+0.001x:* +0.0006x3* +0.0009xs” +0.0008X11"

Where X1, X3 Xs and Xu are the inner diameter of the motor housing, inner diameter of the
magnet, winding pitch, and wire diameter, respectively.

3.2. Optimization Based on the Improved NSGA-III

The flowchart for multi-objective optimization of the magnetic circuit parameters of coreless motors
using the improved NSGA-III algorithm is shown in Fig. 5. First, based on the initialization of the
parent population, the optimization objectives, variables, and surrogate model are defined. Second,
the adaptive crossover and mutation mechanism is introduced in the selection, crossover, and
mutation phases; meanwhile, the normal distribution crossover NDX operator is adopted to generate
the offspring population. The dynamic crowding degree operator is incorporated into the niche
selection and calculation of reference points, thus ultimately achieving the multi-objective
optimization of the magnetic circuit parameters.
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Figure 5. Flowchart of the Improved NSGA-II1 Algorithm Optimization

The algorithm is configured with a population size of 91, a maximum number of iterations of 100, 4
optimization decision variables, and 3 optimization objectives. The simulation analysis and iterative
solution are completed on the MATLAB platform, and the final Pareto optimal front solution set
corresponding to the fitness function is obtained, as shown in Fig. 6.
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Figure 6. Pareto frontier chart

When the Improved NSGA-III algorithm is applied to solve such multi-objective optimization
problems, it generates a set of Pareto optimal solution sets satisfying the non-dominated property
after each iteration, rather than directly outputting a unique global optimal solution as in single-
objective optimization. Therefore, after the algorithm runs to the maximum number of iterations, the
corresponding optimal decision variable values and the optimized values of each objective function
are determined through trade-off analysis, as shown in Table 2.
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Table 2. Optimized variables and target values

decision variable value Optimization Goal Value
Inner diameter of the casing 18.2mm moment coefficient 5.97
Magnet inner diameter 4mm Torque fluctuation 53.15%
Winding pitch 25.29mm Magnetic leakage coefficient 1.05
Conductor diameter 0.094mm

4. SIMULATION EXPERIMENT AND DISCUSSION
4.1. Simulation Experiment Results

To verify the magnetic circuit optimization effect based on the Improved NSGA-I11 algorithm, a
three-dimensional finite element simulation model of the permanent magnet DC coreless motor was
established on the Ansys Maxwell platform. The model adopted a transient magnetic field solver,
with copper as the winding material, N52H neodymium iron boron as the permanent magnet material,
and DT4C pure iron as the motor housing material. The balloon boundary was selected as the
boundary condition, and the mesh was locally refined in the air gap and winding regions to balance
the calculation accuracy and efficiency.

Under the rated operating conditions (24V, 3800r/min), a simulation comparison was conducted on
the motor before and after optimization. The initially designed parameters were adopted forthe motor
prior to optimization, while the values of decision variables shown in Table 2 were selected for the
optimized motor. Identical simulation conditions and boundary settings were applied to eliminate
external interference.

The simulation results are shown in Table 3. After optimization, the torque coefficient increased from
5.78mNm/A to 5.95mNm/A, with an increase of approximately 29%; the torque ripple decreased
from 67% to 58%, with a reduction of approximately 13%; the magnetic leakage coefficient decreased

from 1.09 to 1.05, with a reduction of approximately 37%.
Table 3. Comparison of Optimization Goals

Parameter Name Before After
moment coefficient 5.78mNm/A 5.95mNm/A
Torque fluctuation 67% 58%

Magnetic leakage coefficient 1.09 1.05

Furthermore, a further observation from the comparison curves in Figs. 7 indicates that: although the
peak electromagnetic torque decreases from 11.90mNm to 7.91mNm after optimization, the
fluctuation range is significantly reduced, which means that the motor output is more stable and
conducive to reducing vibration and noise; the peak current is obviously suppressed, dropping from
2.06A t01.33A, thus lowering the system control load; the winding copper loss decreases from 2.86W
to 1.18W, with a reduction of 38.3%, which directly reflects the inhibitory effect of wire diameter
and winding layout optimization on resistance loss and helps reduce temperature rise; the harmonic
content of the air-gap magnetic density curve is reduced and the distribution tends to be more uniform,
demonstrating that the magnetic circuit design effectively suppresses magnetic leakage and local
saturation.
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Figure 7. Comparison curves of motor parameters before and after optimization

Table 4 further summarizes the comprehensive performance comparison under load conditions,
where the motor efficiency is increased from 89% to 93%, verifying the effectiveness of the
optimization measures in improving the energy conversion efficiency.

Table 4. Comparison of Main Parameters for Motor Simulation

Parameter Name Before After
Electromagnetic torque 11.90mNm 7.91mNm
Drive current 2.06A 1.33A
Winding Loss 2.86W 1.18W
Efficiency 89% 93%

In summary, this study adopts the improved NSGA-111 algorithm to complete the multi-objective
optimization of the magnetic circuit of the coreless motor, which effectively enhances the air-gap
magnetic density, improves the uniformity of magnetic circuit distribution, reduces magnetic density
distortion, and achieves the comprehensive improvement of the motor's core performance.

4.2. Discussion

Aiming at the limitations of the traditional NSGA-II1 algorithm in the high-dimensional optimization
of motor magnetic circuits, namely fixed crossover and mutation parameters, unbalanced exploration
and exploitation of genetic operators, and individual redundancy in niche selection, this study
proposes a triple improvement strategy consisting of a dynamic adaptive crossover and mutation
mechanism, a normal distribution crossover NDX operator, and a dynamic crowding degree operator.
This strategy achieves a balance between the global exploration and local exploitation of the
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algorithm and improves the uniformity and diversity of the solution set. Verified by the ZDT and
DTLZ2 test functions, the improved algorithm exhibits a significantly higher fitting degree of the
Pareto front, with gap-free solution set coverage in dual-objective scenarios and more uniform
distribution in high-dimensional scenarios. These results demonstrate the effectiveness of the
improvement strategy in enhancing the algorithm's convergence accuracy and solution set diversity,
providing reliable support for the multi-objective optimization of motor magnetic circuits.

Based on the three-dimensional finite element simulation model established in Ansys Maxwell, the
motor performance indicators before and after optimization were compared under rated operating
conditions, which verified the engineering value of the improved algorithm. After optimization, the
motor torque coefficient is increased by 29%, indicating that the optimization of magnetic circuit
structural parameters effectively reduces the magnetic resistance of the main magnetic flux path and
improves the conversion efficiency; the torque ripple is reduced by 13%, which shows that the
optimization of winding pitch and wire diameter suppresses end magnetic leakage and magnetic
density distortion, thus improving output stability; the magnetic leakage coefficient is reduced by
37%, reflecting that parameter matching optimizes the magnetic flux path, reduces magnetic energy
loss, and improves the utilization rate of permanent magnets. In addition, the motor driving current
is reduced by 35%, and the winding copper loss is reduced by 38.3%, which reflects the inhibitory
effect of wire diameter optimization on resistance loss; the motor efficiency is increased to 93%,
achieving an improvement in energy conversion efficiency and providing a guarantee for the
operation of the motor under extreme aerospace conditions.

In summary, the improved NSGA-I11 algorithm enhances the accuracy and effectiveness of multi-
objective optimization through mechanism innovation. The dynamic adaptive crossover and mutation
mechanism strengthens the algorithm's global search capability in the high-dimensional objective
space of motor magnetic circuits, ensuring that the algorithm breaks through the local optimal trap
and explores the optimal matching combination of key parameters; the NDX operator's ability to
balance global exploration and local exploitation enables the algorithm to accurately capture the
optimal parameter values and achieve comprehensive performance improvement; the uniform
solution set characteristic of the dynamic crowding degree operator allows the algorithm to find the
optimal trade-off point among multiple conflicting objectives. The magnetic circuit parameters
obtained by the optimization improve the magnetic circuit characteristics of the coreless motor,
providing a feasible optimization scheme for the motors used in aerospace actuator systems.

5. CONCLUSION

Aiming at the problems that traditional algorithms are prone to fall into local optima and generate
uneven solution sets in the multi-objective optimization of magnetic circuits for permanent magnet
DC coreless motors in the aerospace field, this paper proposes an improved NSGA-I11 algorithm
integrated with a dynamic adaptive crossover and mutation mechanism, a normal distribution
crossover NDX operator, and a dynamic crowding degree operator. Verified by the ZDT series and
DTLZ2 test functions, the algorithm exhibits significantly superior high-dimensional space search
capability and Pareto solution set uniformity compared with the traditional NSGA-III. Taking the
maximization of torque coefficient and the minimization of torque ripple as well as magnetic leakage
coefficient as the optimization objectives, combined with the decision variables screened via
sensitivity analysis, a high-precision surrogate model established based on the response surface
methodology was embedded into the improved algorithm for optimization. Ansys Maxwell
simulation results show that after optimization, the motor torque coefficient is increased by 29%, the
torque ripple is reduced by 13%, and the magnetic leakage coefficient is decreased by 37%.
Meanwhile, the motor current, copper loss and efficiency are improved synchronously, providing a
high-performance optimization scheme for aerospace actuator systems.
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