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ABSTRACT  

Pressure testing systems are widely used in industrial, aerospace, and other fields, where 
environmental noise is a key factor affecting the accuracy of testing systems. To address the 
problems of noise interference in pressure testing systems and the drawbacks of the classical noise 
filtering algorithm LMS, such as slow convergence speed and insufficient time-varying signal tracking 
capability, this paper proposes a denoising method based on an improved adaptive filtering 
algorithm. Specifically, the Root Mean Square Propagation adaptive learning rate adjustment 
mechanism is introduced into the fixed step-size module of the LMS algorithm to optimize the weight 
update process of the algorithm. By leveraging the ability of RMSProp to adaptively assign learning 
rates to different parameters during the iteration process, the problem of convergence stagnation 
caused by premature learning rate attenuation is effectively avoided. Meanwhile, an attenuation 
coefficient is incorporated into the improved algorithm to suppress oscillations during gradient 
updates, thereby significantly enhancing the stability and robustness in time-varying noise 
environments. Experimental results show that the improved algorithm increases the convergence 
speed by 69.5% and improves the signal-to-noise ratio by 17.7%, which enhances the signal 
processing accuracy and anti-interference capability, and satisfies the denoising requirements of 
ground tests for pressure testing systems. 
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1. INTRODUCTION 

In numerous technical fields such as modern industry and aerospace, force measuring systems play 
an indispensable core role. With the accelerated global industrialization and intelligentization process, 

traditional manual force measurement modes have been difficult to meet the requirements of high 
precision, high efficiency and high reliability in modern scenarios. Manual force measurement is 
plagued by problems including large data recording errors, high labor costs and susceptibility to 

human interference. Against this backdrop, force measuring systems have emerged as an integrated 
solution that incorporates sensor technology, data processing technology and automatic control 

technology. By enabling automatic collection, accurate measurement, real-time transmission and 
intelligent analysis of weight data, these systems have become an indispensable key infrastructure in 
the upgrading of modern industries, and are widely applied in sectors like iron and steel metallurgy, 

food processing and aerospace. At present, although force measuring systems have achieved 
remarkable development, many problems still persist in complex application scenarios. Among these, 

dynamic force measurement accuracy control remains a great challenge; under conditions such as 
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high-speed movement of goods, vibration interference and uneven load distribution, how to balance 

measurement speed and accuracy continues to be a core issue. 

The traditional PID dynamic weighing compensation method can achieve an accuracy of ±0.1% under 

low-velocity conditions through parameter adjustment. However, its fixed parameters make it 
difficult to adapt to complex working conditions such as acceleration/deceleration and sudden load 

changes, leading to compensation inaccuracies [1]. Yan W et al. [2] adopted the EKF algorithm to 
suppress sensor noise via state equation modeling, reducing the static weighing error by 0.08%. 
Nevertheless, this method relies on an accurate system model; model mismatch in complex 

environments will result in accuracy degradation, and it also shows poor adaptability to non-Gaussian 
noise. The multi-factor compensation algorithm based on the BP neural network proposed by A K R 

[3] integrates environmental parameters, which reduces the environmental interference error by 1.2%. 
Yet, it requires a large amount of labeled data for training, exhibits limited generalization capability 
under extreme working conditions, and features slow parameter updating, making it difficult to meet 

the requirements of real-time weighing. Zhang Haochen et al. [4] applied an adaptive FIR filter based 
on the LMS algorithm to dynamic vehicle weighing. This method can adjust parameters in real time 

to track signal changes, but there is still room for optimization. Liu X [5] employed a wavelet 
threshold denoising method to address vibration interference, cutting down the vibration-induced 
error by 0.5%. However, the threshold selection depends on empirical values, leading to poor 

adaptability to multi-frequency vibrations, and the coupling effect between vibration and load is not 
taken into consideration. In summary, the existing methods still have deficiencies in terms of dynamic 

adaptability, model robustness and complex working condition handling capability. 

To address the issue of complex noise interference encountered by pressure testing systems in 
practical applications, this paper proposes an improved denoising method based on the adaptive 

filtering algorithm and verifies the superiority of the improved algorithm. Aiming at the problems of 
slow convergence speed and insufficient tracking capability for time-varying signals in non-
stationary noise environments, the RMSProp adaptive learning rate adjustment mechanism is 

introduced to optimize the weight updating process of the algorithm. By assigning adaptive learning 
rates to different parameters during the iteration process, the problem of convergence stagnation 

caused by premature learning rate attenuation is effectively avoided. By suppressing oscillations in 
the gradient updating process, the stability and robustness of the algorithm in time-varying noise 

environments are significantly improved. 

2. LMS ALGORITHM MODEL 

The adaptive filtering theory, proposed by Widrow B et al., is an optimal filtering method developed 

on the basis of linear filtering techniques such as Wiener filtering and Kalman filtering [6]. Owing to 
its superior adaptive performance and enhanced filtering capability, it has been widely applied in 

numerous fields including communications, system identification, noise cancellation, adaptive line 

enhancement, adaptive channel equalization, speech linear prediction, and adaptive antenna arrays. 

The core of an adaptive filter lies in its adaptive filtering algorithm. From the perspective of real-time 

control, the algorithm is expected to be simple with low computational complexity. Since the mean 

square error ( )n  is the filter weight ( )W n  is a quadratic function, the method of steepest gradient 

descent can thus be adopted for recursive solution. According to the principle of the steepest gradient 

descent method, the iterative update of weight coefficients can be expressed as follows: 

 

( 1) ( ) ( )
2

W n W n n


+ = −                            (1) 

 



 

131 

In the formula, μ denotes the convergence factor, also referred to as the convergence coefficient or 
step size, which exerts a crucial influence on the convergence speed of the iterative process. In general, 

a larger convergence step size leads to a relatively faster convergence speed [7]. ( )n  represents 

the gradient of the mean square error function with respect to the weight coefficient vector ( )W n  the 

gradient, The negative sign indicates that the weight update proceeds along the direction of the 

gradient. Substituting Equation *RW P=  into Equation (1), we obtain: 

 

 ( 1) ( ) ( )W n W n P RW n+ = + −                       (2) 

 

Based on the optimization theory of steepest gradient descent, ( )W n  will eventually converge to 
*W , Meanwhile, ( )n  will attain its minimum value. However, in numerous practical applications,  

The statistical characteristics of signals d(n) and X(n) are unknown; therefore, iterative calculation 

cannot be directly performed using Equation (2). The square of the instantaneous error 
2 ( )e n  is 

generally used to estimate the mean square ( )n , namely: 

 
2ˆ( ) ( )n e n =                               (3) 

 

The gradient of the corresponding mean square error estimate is expressed as follows: 

 

 ˆ( ) 2 ( ) ( )n e n e n =                            (4) 

 

From the output error signal ( ) ( ) ( ) ( ) ( ) ( )Te n d n y n d n W n X n= − = −  of the adaptive filter, we obtain: 

 
( ) ( )e n X n = −                              (5) 

Substituting into Equation (3), we obtain: 

ˆ( ) 2 ( ) ( )n X n e n = −                            (6) 

Then Equation (1) is transformed into: 

( 1) ( ) ( ) ( )W n W n X n e n+ = +                         (7) 

 
This is the well-known LMS algorithm. This method is relatively simple and effective for solving 

*W , as it does not require prior calculation of the correlation matrix or matrix inversion operations. 

The LMS algorithm is an adaptive filtering algorithm suitable for scenarios where prior statistical 

characteristics are unknown. Its core function lies in iteratively solving the weight coefficients of the 
filter to achieve effective filtering of mixed noise. The system operation principle of this algorithm is 

illustrated in Figure 1. where ( )u n  denotes the input signal of the filter, and ( )y n  denotes the output 

signal of the filter. The error signal ( )e n  is obtained from the difference between the desired signal 

( )d n  and the output signal ( )y n . Based on ( )e n , the adaptive filtering algorithm is able to update 

the weight coefficients of the filter, and ultimately make the output signal ( )y n  approximate the 

desired signal ( )d n  as closely as possible [8]. 
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Figure 1. Schematic Diagram of the Adaptive Filter 

For the adaptive filter illustrated in Figure 1, when the LMS adaptive filtering algorithm is applied to 

it, the calculation steps are as follows: 

(1) Select the parameters and initial conditions, including the filter order L, the convergence 

coefficient μ, and the initial weight vector W(0). 

(2) Calculate the output of the adaptive filter: 

 
1

0

( ) ( ) ( )
L

i

i

y n w n x n i
−

=

= −                            (8) 

(3) Calculate the error signal: 

( ) ( ) ( )e n d n y n= −                              (9) 

 

(4) Update the weight ( )W n  of the filter: 

 

( 1) ( ) ( ) ( )i iw n w n x n l e n+ = + −                        (10) 

3. IMPROVEMENT AND OPTIMIZATION OF THE LMS ALGORITHM 

3.1. Algorithm Improvement 

The adaptive gradient algorithm (AdaGrad) is a type of algorithm capable of adaptively adjusting the 

model's learning rate parameters. It can yield favorable results in deep learning models. The optimizer 
of this algorithm first sets a global learning rate, then takes the ratio of the global learning rate to the 

square root of the accumulated historical gradients as the actual learning rate. Meanwhile, it calculates 
the update amount for each parameter separately, thereby realizing the dynamic adjustment of the 

learning rate for each parameter. 

The most prominent advantage of the AdaGrad algorithm is that it does not require manual adjustment 
of the learning rate and exhibits excellent handling capability for sparse gradients, with the initial 

value usually only needing to be set to 0.001 [9]. This algorithm can accelerate the update speed of 
parameters with low update frequencies while slowing down the update pace of parameters with high 
update frequencies. In addition, AdaGrad can enhance the robustness of stochastic gradient descent 

(SGD). The formula for its gradient accumulation update step is as follows: 

 

1 ( )t t t

t

J
G




  


+ = − 

+
                         (11) 
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ε is usually set to 10−8 to avoid division by zero, while the step size η is set to 0.01. The advantage 
of this algorithm is its ability to automatically adjust the learning step size. However, it also has a 
drawback in that the learning rate update is highly dependent on the squared gradient. During each 

update process, the gradient vector remains positive, causing the denominator of the learning rate to 
accumulate continuously and gradually approach zero, which ultimately leads to the premature 

termination of algorithm iteration. 

The improvement of the LMS adaptive filtering algorithm refers to the automatic adjustment of 
factors such as acquired data-dependent parameters, sequences, and conditions during data processing 

and analysis, so as to ensure the accuracy and efficiency of the algorithm [10]. Based on the previous 
analysis of the AdaGrad adaptive weight algorithm, this study integrates the AdaGrad intelligent  

algorithm with the LMS adaptive filtering algorithm, and realizes parameter optimization by adjusting 
the learning rate and parameter frequency of the algorithm at different stages. This embodies an 

adaptive learning rate concept: 

(1) At the initial stage of iteration, the current position is far from the optimal point, so a large learning 

rate μ is adopted. 

(2) As the number of iteration steps increases and the model gradually approaches the optimal point 

where the optimal solution is located, the learning rate μ can be reduced accordingly. 

Such a design enables the learning rate to automatically adapt to the gradient changes during the 

optimization process, and the parameter iteration formula is as follows: 

 

1 1
1 2

0
( )

s s s
s

ii

g

g


  − −

−

=

= −


                       (12) 

 
The learning rate of this method is obtained by multiplying the current learning rate by the reciprocal 

of the sum of the squared gradients from the previous iteration, thereby enabling the automatic 

adjustment of the learning rate according to gradient changes. 

In the improved LMS algorithm, this study draws on this idea and incorporates an adaptive learning 

rate mechanism based on historical gradient information, allowing the algorithm to independently 
update the step size for each weight parameter. The algorithm flow after the preliminary improvement 

is shown in the table below: 

Table 1. Steps of the AdaGrad-LMS Algorithm 

Algorithm Adagrad-LMS 

1   Initialize: isr is the length of input xn, rps is for numerical stability, and M is the order 

2   for k=M:isr   

3           Obtain M sampling points of the current input xn and assign them to x 

4           Current output 
'( )y W x=   

5           Calculation error ( ) ( ) ( )e n d n y n= −  

6           Compute gradient ( )grad e n x=   

7           Update accumulated squared gradients 
'0.96 ;r r grad grad=  +   

8           Update Weights (:, ) (:, 1) / ( ( ))W k W k mu rps sqrt r= − + +   grad  

9          Calculate filtered output 
'y ( ) (:, ).n k W k x=   

10   end 
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It can be seen from Table 1 that the gradient descent algorithm takes the square root of the 
accumulated historical gradients as the denominator during the iteration process. This causes the 
learning rate to continuously decrease and eventually approach zero, leading to the premature 

termination of the algorithm before it reaches the optimal solution. To address this problem, the 

RMSProp algorithm is now introduced to improve the gradient descent-based LMS algorithm. 

The improvement of the LMS algorithm using the AdaGrad gradient descent algorithm represents a 
fundamental optimization approach [11]. This method lacks an iterative decay mechanism and only 
dynamically adjusts the learning rate by accumulating the sum of squared historical gradients. Such 

an adjustment tends to cause the learning rate to prematurely enter a monotonically decreasing state 
as the iteration progresses, thereby affecting the subsequent optimization performance of the 

algorithm. Therefore, a decay coefficient ρ is introduced to adjust the update method of the 
accumulated squared gradients, which is modified to root mean square propagation. The iteration 

formula is as follows: 

1 1

s

s s sg
v


  − −= −                             (13) 

 
2

1 0v g=                                 (14) 

 
2

1 1(1 )( )s s sv v g− −= + −                          (15) 

 

During the optimization of the LMS algorithm, the term root mean square refers to the square root of 
the mean of the squared gradients, while propagation means incorporating historical gradient data 
into the current gradient update process. Based on this logic, the core of the optimization process lies 

in adjusting the 7th step in Table 1 and redesigning the update method of the coefficient ( )w n  in 

accordance with Equation (8). After the above improvements, the steps of the new algorithm are 

presented in Table 2. 

Table 2. Steps of the RMSProp-LMS Algorithm 

Algorithm RMSProp-LMS 

1   Initialization: isr is the length of the input xn, error e(n), numerical stability constant rps, 

order M, and decay factor p 

2   for = :k M isr  
3         Obtain M sample points of the current input xn and assign them to x 

4         Current output 
'( )y W x=   

5         Calculation error ( ) ( ) ( )e n d n y n= −  

6         Compute the gradient grad en x=   

7         Update accumulated squared gradients 
'(1- )r p r p p grad grad=  +    

8         Update Weights (:, ) (:, 1) / ( ( ))W k W k mu rps sqrt r grad= − + +   

9        Calculate filtered output 
'( ) (:, )yn k W k x=   

10   end 

 

It can be seen from Table 2 that, compared with Table 1, the core adjustment of the improved 

algorithm is reflected in the calculation logic of the accumulated squared gradients in the 7th step, 
with a decay coefficient ρ added. Specifically, the new root mean square obtained by processing the 
squared gradient values through exponentially weighted moving average can form a smoothed 

estimate of the magnitude of the parameter gradients, thereby providing a reliable basis for the 
learning rate adjustment of each parameter. This calculation method of historical squared gradients 
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based on exponentially weighted moving average can gradually weaken the impact of early gradients 
on the current step size adjustment as the iteration progresses. It can not only maintain the effective 
learning rate required by the algorithm and avoid the learning rate from falling into an extremely 

small state prematurely, but also specifically address the core problem of the rapid decline of the 

learning rate in gradient descent algorithms. 

3.2. Algorithm Optimization 

Now, parameter optimization is performed on the improved algorithm. According to the literature 
investigation, the performance optimization of the RMSProp-LMS algorithm can be achieved through 

parameter adjustment, involving four key parameters: algorithm order, initial weight, learning rate, 
and maximum number of iterations. This study first conducts a parameter optimization research on 

the RMSProp-LMS algorithm to explore its optimal performance. 

(1) Adjustment of Algorithm Order 

The algorithm order is a key factor affecting prediction accuracy, and a reasonable order setting is an 

important prerequisite for the algorithm to achieve excellent performance [12]. In this study, 20% of 
the total data volume is initially selected as the algorithm order, corresponding to a specific value of 

150. Figure 2 presents the algorithm error distribution when the order is set to 100, from which it can 
be observed that the error values of multiple sampling points have exceeded 0.2000. Considering that 
the amplitude of the original signal is 0.16, this error level is beyond the acceptable range. Simulation 

results show that the average error of the algorithm under this order is approximately 0.2135, with a 
time complexity of 0.0083 s. The overall performance fails to meet expectations and thus requires 

further optimization. Two approaches will be adopted subsequently to adjust the order parameter: one 
is to increase the order gradually, and the other is to decrease the order appropriately, so as to explore 

the optimal parameter configuration. 

0 500 1000

Sampling point

0

0.05

0.1

0.15

0.2

RMSProp-LMS Test Error

250 750

 

Figure 2. Algorithm Error Diagram at Order 100 

The first optimization approach is to increase the algorithm order. Simulation tests are carried out 
with different orders including 100, 130, 150, 170, 190 and 200. The results indicate that increasing 
the order does not improve the algorithm performance; on the contrary, it leads to a continuous 

deterioration of the performance. Taking the test results with an order of 200 as an example, in the 
error distribution shown in Figure 3, the error values at multiple sampling positions have exceeded 

0.25. Simulation data show that when the order is 200, the average error of the algorithm is 
approximately 0.2678, with a time complexity of 0.0065 s. This error level has caused severe 
interference to the original signal. Therefore, the first optimization approach is not feasible, and it is 

necessary to switch to the second approach for further research. 
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Figure 3. Algorithm Error Diagram at Order 200 

The second optimization approach is to reduce the filter order. Simulation analyses are conducted 
with orders including 40, 30, 20, 10, 5 and 4. Simulation results show that with the decrease of the 
order, the average error of the algorithm presents a downward trend, but this trend is not continuous; 

instead, there exists an obvious critical interval. When the order ranges from 4 to 10, the average error 
reaches the minimum value; once the order is lower than 4, the average error starts to increase 

inversely. Based on this, 4 is determined as the final order of the algorithm. Figure 4 shows the error 
characteristic diagram when the order is 4, where the errors of the vast majority of sampling points 
are controlled within 0.1800, with only a few sampling points exceeding this range. The 

corresponding simulation data are as follows: the average error is approximately 0.1309, and the time 

complexity is 0.0064 s, indicating a favorable overall optimization effect. 
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Figure 4. Algorithm Error Diagram at Order 4 

(2) Adjustment of Initial Weight 

The initial weight has a significant impact on algorithm accuracy, and an appropriate value needs to 
be selected. Considering that the initial weight usually needs to be set to a small value, combined with 

the results of literature investigation, 0.4 is selected as the initial weight for testing. Figure 5 shows 
the error distribution under this initial weight, where the errors of most sampling points have exceeded 
0.6, and the errors of some points have even reached 1.4. Simulation data indicate that the average 

error is approximately 0.5632 with a time complexity of 0.0065 s. The performance is unsatisfactory 
and requires further adjustment. In view of the fact that the current value of the initial weight is still 

relatively large, it is necessary to reduce the initial weight to achieve the expected performance. 
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Figure 5. Algorithm Error Diagram at Initial Weight of 0.4 

Simulation analyses are carried out with different initial weight parameters including 0.2, 0.15, 0.1 

and 0.05. The results show that with the decrease of the initial weight, the algorithm performance 
shows a gradual optimization trend, but there exists a critical value characteristic: when the initial 

weight is lower than 0.15, the algorithm will experience an abrupt increase in error when processing 
part of the data. Based on the simulation results of multiple groups of data, 0.15 is finally determined 
as the optimal initial weight. Figure 6 shows the error distribution diagram under this initial weight, 

where the errors of most sampling points are controlled within 0.09. The corresponding simulation 

data are as follows: the average error is approximately 0.0732, with a time complexity of 0.0063 s. 
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Figure 6. Algorithm Error Diagram at Initial Weight of 0.15 

(3) Adjustment of Learning Rate 

Simulation tests are conducted with different learning rate parameters including 0.008, 0.006, 0.004, 
0.002 and 0.001. The results show that the algorithm error follows a trend of first decreasing and then 
increasing with the variation of learning rate, with the minimum error achieved when the learning 

rate is set to 0.002. Figure 7 presents the error distribution diagram under this learning rate, where the 
errors of most sampling points are controlled below 0.1. Simulation data indicate that the 

corresponding average error is approximately 0.0674 with a time complexity of 0.0063 s, which fully 

meets the expected design requirements. 
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Figure 7. Algorithm Error Diagram at Learning Rate of 0.002 

(4) Adjustment of Iteration Number 

The iteration number is not only correlated with the algorithm error level, but also has an impact on 
its time complexity. Therefore, when adjusting the iteration number, it is necessary to balance the 

dual requirements of low error and low time complexity. Figure 8 presents the simulation 
characteristic diagram of the iteration number, and the results show that: when the iteration number 

exceeds 5, the error improvement effect tends to be stable, while the time complexity increases 
significantly; when the iteration number is less than 5, although the time complexity decreases to a 
certain extent, the error increases sharply. Based on a comprehensive trade-off between the two 

factors, 5 is finally determined as the optimal iteration number. 

0 10 20 30 40 50 60 70

Iteration cycle

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E
rr

o
r

 

Figure 8. Simulation Diagram of Iteration Cycles 

After parameter optimization, the final parameter configuration of the RMSProp-LMS algorithm is 

as follows: order, initial weight, learning rate, and maximum iteration number. Figure 9 shows the 
algorithm error distribution diagram after parameter debugging. The errors of the vast majority of 

sampling points are controlled within 0.0900. Simulation results indicate that the average error of the 

algorithm under this parameter configuration is 0.0473. 
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Figure 9. Error Diagram of the RMSProp-LMS Algorithm 

4. ALGORITHM SIMULATION AND ANALYSIS 

After parameter optimization of the RMSProp-LMS algorithm, an experimental framework is 
constructed by invoking the LMS filtering module and the RMSProp-LMS filtering module via the 

model, and corresponding processing results are generated  [13]. Thus, a simulation comparison 
between the improved algorithm and the original algorithm is conducted under consistent 

experimental conditions. The preliminary arrangement results of the time-domain waveforms before 
and after filtering obtained from the experiment are shown in Figure 10. To simulate the complex 
characteristics of data in real-world scenarios, the study introduces the AR noise model and the MA 

noise model to perform secondary processing on additive white Gaussian noise (AWGN) for injecting 
uncertainties. This processing method makes the experimental model more consistent with the 

dynamic variation laws of the real world, thereby enhancing the authenticity and scene simulation 

fidelity of the experiment. 
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Figure 10. Time-Domain Comparison Diagram of Denoising Performance between RMSProp-

LMS and LMS Algorithms 

It can be concluded from the results in Figure 10 that the improved algorithm can still effectively 
complete the filtering task in harsh channel environments. From the perspective of time-domain 

waveforms, although the waveforms after denoising exhibit obvious distortion in the initial stage, 
they can quickly approximate the waveforms of the original audio signals and gradually achieve 

signal restoration. In addition, according to the parameter conditions set in the experiment, the initial 
step size is determined as η0. The filtering performance can be further optimized by adjusting the 
step size in subsequent research. Based on this, a more detailed comparative analysis of the filtering 
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effects of the improved algorithm will be carried out in the following content, so as to further verify 

the effectiveness and superiority of the improved algorithm. 

This experiment is designed on the basis of the block diagram of the equalizer principle. First, the 

signal-to-noise ratio (SNR) of the input signal is set to -6 dB. Then, by adjusting the specific value of 
the filter order M in the initial parameters, independent simulation experiments are conducted under 

two parameter configurations of M1and M2, focusing on observing the time-domain waveform 
characteristics of the residual noise after filtering. The experimental results show that after the 
algorithm enters the convergence state, the residual noise in the latter half of the time-domain 

waveform shows a consistent variation trend, and the noise amplitude is maintained at a low level. 
To more clearly demonstrate the dynamic variation law of noise in the pre-convergence stage, the 

time-domain waveform of the first 3 seconds is selected for analysis, and the specific results are 

shown in Figure 11(a), (b), (c) and (d). 
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(a) LMSResidual Noise Waveform at M=32 (b) RMSProp-LMSResidual Noise Waveform at M=32 
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(c) LMS Residual Noise Waveform at M=4 (d) RMSProp-LMSResidual Noise Waveform at M=4 

Figure 11. Comparison of residual noise waveforms between RMSProp-LMS and LMS 

Under the condition of filter order M=32, the time required for the noise level of the two algorithms 

to reach a steady state after filtering was observed. The results show that the convergence time of the 
RMSProp-LMS algorithm is approximately 0.5 s, while that of the traditional LMS algorithm is 0.65 
s, representing a convergence speed improvement of about 23%. In terms of noise amplitude, the 

RMSProp-LMS algorithm exhibits a lower steady-state amplitude level, indicating a more favorable 
filtering performance. When the order is reduced to M=4, the difference in convergence speed 

between the two algorithms further widens: the RMSProp-LMS algorithm can achieve convergence 
in only about 0.23s, whereas the traditional LMS algorithm requires 0.4s, corresponding to a 
convergence speed improvement of approximately 60%. This demonstrates that the RMSProp-LMS 

algorithm has a more significant convergence performance advantage under the low-order filter 

configuration. 

In terms of mean squared error (MSE), different filter orders have a significant impact on algorithm 
performance. At a filter order of M=32, the filtered output MSE of the traditional LMS algorithm is 
1.433×10−3 dB, while the MSE of the improved RMSProp-LMS algorithm after filtering is reduced 

to 1.398×10−3dB, representing a 2.67% reduction in error amplitude compared with the traditional 
algorithm. When the filter order is M=4, the steady-state error advantage of the improved algorithm 

is further highlighted: the filtered MSE of the traditional LMS algorithm is 1.304×10−3dB, while that 

of the RMSProp-LMS algorithm is only 0.795×10 −3dB, with a 42% reduction in error amplitude. 
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To eliminate the accidental error that may exist in a single experiment and ensure the reliability of 
the experimental results, further Monte Carlo simulation experiments were conducted. A total of 200 
independent simulation tests were completed by gradually increasing the input signal-to-noise ratio 

(SNR). The relevant steady-state error data of the algorithms under the above different filter orders 
were statistically organized, and the average value of each index was calculated. The final 

summarized results are presented in Table 3. 

Table 3. Monte Carlo Simulation Data of the LMS Algorithm 

Algorithm complexity Algorithm Name Convergence Time / s MSE/dB 

M=32 LMS 100 1.564 

 RMSProp-LMS 89 1.359 

 Average Improvement Rate 11% 13.1% 

M=4 LMS 105 1.556 

 RMSProp-LMS 32 1.225 

 Average Improvement Rate 69.5% 21.27% 

 

It can be concluded from the statistical data in Table 3 that, verified by multiple repeated simulation 
tests, the RMSProp-LMS algorithm maintains superior convergence accuracy and convergence speed 

compared with the traditional LMS algorithm under both filter order configurations of M=4 and 
M=32. In particular, such performance advantages are more prominent when the filter order is at a 
low level. This result is highly consistent with the core characteristics of the RMSProp-LMS 

algorithm. Moreover, with the increase in the input signal-to-noise ratio (SNR), the improvement of 
the output SNR achieved by the improved algorithm over the original algorithm becomes increasingly 

significant. Simulation results show that in harsh channels with an input SNR above -6 dB, the 
RMSProp-LMS algorithm achieves an average convergence speed improvement of 69.5% and an 

average output SNR improvement of 17.7% compared with the original LMS algorithm. 

5. CONCLUSION 

This paper focuses on the goal of improving the anti-interference capability of the pressure test system, 

and completes the improvement and verification of the adaptive filtering algorithm. Aiming at the 
problem of complex noise interference existing in the experimental environment of the pressure test 
system, a denoising method based on the improvement of the adaptive filtering algorithm is proposed, 

and the superiority of the improved algorithm is verified. To address the problems of slow 
convergence speed and insufficient time-varying signal tracking capability in non-stationary noise 

environments, the RMSProp adaptive learning rate adjustment mechanism is introduced to optimize 
the algorithm weight update process. By assigning adaptive learning rates to different parameters 
during the iteration process, the problem of convergence stagnation caused by premature learning rate 

attenuation is effectively avoided. By suppressing the oscillation in the gradient update process, the 
stability and robustness in time-varying noise environments are significantly improved. Experimental 

results show that the improved algorithm achieves a 69.5% increase in convergence speed and a 17.7% 
improvement in signal-to-noise ratio (SNR), which enhances the accuracy of signal processing and 

the anti-interference capability of the system. 

Although the RMSProp-LMS algorithm exhibits excellent filtering performance in environments 
with an SNR of -6 dB, its performance degrades significantly in strong interference scenarios with 

lower SNRs. On the one hand, gradient calculation is susceptible to outliers in strong noise 
environments, leading to an increase in the estimation deviation of accumulated squared gradients 
and thus causing distortion in learning rate adjustment. On the other hand, the algorithm has a strong 

dependence on the differences in statistical characteristics between the input signal and noise. When 
the noise exhibits non-Gaussian and impulsive characteristics, the optimization objective based on 
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mean squared error (MSE) minimization cannot effectively separate signal and noise components. As 
a result, residual interference remains in the filtered signal, making it difficult to meet the high-

precision testing requirements in extremely harsh environments. 
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