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ABSTRACT

Pressure testing systems are widely used in industrial, aerospace, and other fields, where
environmental noise is a key factor affecting the accuracy of testing systems. To address the
problems of noise interference in pressure testing systems and the drawbacks of the classical noise
filtering algorithm LMS, such as slow convergence speed and insufficienttime-varying signal tracking
capability, this paper proposes a denoising method based on an improved adaptive filtering
algorithm. Specifically, the Root Mean Square Propagation adaptive learning rate adjustment
mechanism is introduced into the fixed step-size module of the LMS algorithm to optimize the weight
update process of the algorithm. By leveraging the ability of RMSProp to adaptively assign learning
rates to different parameters during the iteration process, the problem of convergence stagnation
caused by premature learning rate attenuation is effectively avoided. Meanwhile, an attenuation
coefficient is incorporated into the improved algorithm to suppress oscillations during gradient
updates, thereby significantly enhancing the stability and robustness in time-varying noise
environments. Experimental results show that the improved algorithm increases the convergence
speed by 69.5% and improves the signal-to-noise ratio by 17.7%, which enhances the signal
processing accuracy and anti-interference capability, and satisfies the denoising requirements of
ground tests for pressure testing systems.
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1. INTRODUCTION

In numerous technical fields such as modern industry and aerospace, force measuring systems play
an indispensable core role. With theaccelerated global industrialization and intelligentization process,
traditional manual force measurement modes have been difficult to meet the requirements of high
precision, high efficiency and high reliability in modern scenarios. Manual force measurement is
plagued by problems including large data recording errors, high labor costs and susceptibility to
human interference. Against this backdrop, force measuring systems have emerged as an integrated
solution that incorporates sensor technology, data processing technology and automatic control
technology. By enabling automatic collection, accurate measurement, real-time transmission and
intelligent analysis of weight data, these systems have become an indispensable key infrastructure in
the upgrading of modern industries, and are widely applied in sectors like iron and steel metallurgy,
food processing and aerospace. At present, although force measuring systems have achieved
remarkable development, many problems still persist in complex application scenarios. Among these,
dynamic force measurement accuracy control remains a great challenge; under conditions such as
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high-speed movement of goods, vibration interference and uneven load distribution, how to balance
measurement speed and accuracy continues to be a core issue.

The traditional PID dynamic weighing compensation method can achieve an accuracy of #0.1% under
low-velocity conditions through parameter adjustment. However, its fixed parameters make it
difficult to adapt to complex working conditions such as acceleration/deceleration and sudden load
changes, leading to compensation inaccuracies [1]. Yan W et al. [2] adopted the EKF algorithm to
suppress sensor noise via state equation modeling, reducing the static weighing error by 0.08%.
Nevertheless, this method relies on an accurate system model; model mismatch in complex
environments will result in accuracy degradation, and it also shows poor adaptability to non-Gaussian
noise. The multi-factor compensation algorithm based on the BP neural network proposed by A KR
[3] integrates environmental parameters, which reduces the environmental interference error by 1.2%.
Yet, it requires a large amount of labeled data for training, exhibits limited generalization capability
under extreme working conditions, and features slow parameter updating, making it difficult to meet
the requirements of real-time weighing. Zhang Haochen et al. [4] applied an adaptive FIR filter based
on the LMS algorithm to dynamic vehicle weighing. This method can adjust parameters in real time
to track signal changes, but there is still room for optimization. Liu X [5] employed a wavelet
threshold denoising method to address vibration interference, cutting down the vibration-induced
error by 0.5%. However, the threshold selection depends on empirical values, leading to poor
adaptability to multi-frequency vibrations, and the coupling effect between vibration and load is not
taken into consideration. In summary, the existing methods still have deficiencies in terms of dynamic
adaptability, model robustness and complex working condition handling capability.

To address the issue of complex noise interference encountered by pressure testing systems in
practical applications, this paper proposes an improved denoising method based on the adaptive
filtering algorithm and verifies the superiority of the improved algorithm. Aiming at the problems of
slow convergence speed and insufficient tracking capability for time-varying signals in non-
stationary noise environments, the RMSProp adaptive learning rate adjustment mechanism is
introduced to optimize the weight updating process of the algorithm. By assigning adaptive learning
rates to different parameters during the iteration process, the problem of convergence stagnation
caused by premature learning rate attenuation is effectively avoided. By suppressing oscillations in
the gradient updating process, the stability and robustness of the algorithm in time-varying noise
environments are significantly improved.

2. LMS ALGORITHM MODEL

The adaptive filtering theory, proposed by Widrow B et al., is an optimal filtering method developed
on the basis of linear filtering techniques such as Wiener filtering and Kalman filtering [6]. Owing to
its superior adaptive performance and enhanced filtering capability, it has been widely applied in
numerous fields including communications, system identification, noise cancellation, adaptive line
enhancement, adaptive channel equalization, speech linear prediction, and adaptive antenna arrays.

The core of an adaptive filter lies in its adaptive filtering algorithm. From the perspective of real-time
control, the algorithm is expected to be simple with low computational complexity. Since the mean
square error &(N) is the filter weight W (n) is a quadratic function, the method of steepest gradient
descent can thus be adopted for recursive solution. According to the principle of the steepest gradient
descent method, the iterative update of weight coefficients can be expressed as follows:

W(n+1) =W () -2 V() (1)
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In the formula, p denotes the convergence factor, also referred to as the convergence coefficient or
step size, which exerts a crucial influence on the convergence speed of the iterative process. In general,

a larger convergence step size leads to a relatively faster convergence speed [7]. V&(n) represents
the gradient of the mean square error function with respect to the weight coefficient vector W (n) the
gradient, The negative sign indicates that the weight update proceeds along the direction of the
gradient. Substituting Equation RW™ =P into Equation (1), we obtain:

W (n+1) =W (n)+ x[P—RW (n)] )

Based on the optimization theory of steepest gradient descent, W(n) will eventually converge to
W™, Meanwhile, £(n) will attain its minimum value. However, in numerous practical applications,
The statistical characteristics of signals d(n) and X(n) are unknown; therefore, iterative calculation
cannot be directly performed using Equation (2). The square of the instantaneous error e*(n) is

generally used to estimate the mean square £(Nn), namely:

En)=€’(n) @A)
The gradient of the corresponding mean square error estimate is expressed as follows:
VE(n) =2[Ve(n)Je(n) @)

From the output error signal e(n) =d(n)—y(n)=d(n)—W " (n)X (n) of the adaptive filter, we obtain:

Ve(n) =-X(n) (5)
Substituting into Equation (3), we obtain:
VE(n) =-2X (n)e(n) 6)
Then Equation (1) is transformed into:
W(n+1) =W (n)+ uX(n)e(n) @)

This is the well-known LMS algorithm. This method is relatively simple and effective for solving
W™, as it does not require prior calculation of the correlation matrix or matrix inversion operations.

The LMS algorithm is an adaptive filtering algorithm suitable for scenarios where prior statistical
characteristics are unknown. Its core function lies in iteratively solving the weight coefficients of the
filter to achieve effective filtering of mixed noise. The system operation principle of this algorithm is
illustrated in Figure 1. where U(N) denotesthe input signal of the filter,and Y(n) denotesthe output

signal of the filter. The error signal €(n) is obtained from the difference between the desired signal
d(n) and the output signal Y(n). Based on €(N), the adaptive filtering algorithm is able to update
the weight coefficients of the filter, and ultimately make the output signal Y(n) approximate the
desired signal d(n) as closely as possible [8].
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Figure 1. Schematic Diagram of the Adaptive Filter

For the adaptive filter illustrated in Figure 1, when the LMS adaptive filtering algorithm is applied to
it, the calculation steps are as follows:

(1) Select the parameters and initial conditions, including the filter order L, the convergence
coefficient p, and the initial weight vector W(0).

(2) Calculate the output of the adaptive filter:

) = 3w (x(—) ®
(3) Calculate the error signal:
e(n)=d(n)-y(n) 9)

(4) Update the weight W (n) of the filter:
W, (n+1) =w;(n) + ux(n-1)e(n) (10)

3. IMPROVEMENT AND OPTIMIZATION OF THE LMS ALGORITHM
3.1. Algorithm Improvement

The adaptive gradient algorithm (AdaGrad) is a type of algorithm capable of adaptively adjusting the
model's learning rate parameters. It can yield favorable results in deep learning models. The optimizer
of this algorithm first sets a global learning rate, then takes the ratio of the global learning rate to the
square root of the accumulated historical gradientsas the actual learning rate. Meanwhile, it calculates
the update amount for each parameter separately, thereby realizing the dynamic adjustment of the
learning rate for each parameter.

The most prominent advantage of the AdaGrad algorithm is that it does not require manual adjustment
of the learning rate and exhibits excellent handling capability for sparse gradients, with the initial
value usually only needing to be set to 0.001 [9]. This algorithm can accelerate the update speed of
parameters with low update frequencies while slowing down the update pace of parameters with high
update frequencies. In addition, AdaGrad can enhance the robustness of stochastic gradient descent
(SGD). The formula for its gradient accumulation update step is as follows:

Oy =0, -——=—V,1(6) (11)

JG +¢&

132



g Is usually set to 10—8 to avoid division by zero, while the step size 1 is set to 0.01. The advantage
of this algorithm is its ability to automatically adjust the learning step size. However, it also has a
drawback in that the learning rate update is highly dependent on the squared gradient. During each
update process, the gradient vector remains positive, causing the denominator of the learning rate to
accumulate continuously and gradually approach zero, which ultimately leads to the premature
termination of algorithm iteration.

The improvement of the LMS adaptive filtering algorithm refers to the automatic adjustment of
factors such as acquired data-dependent parameters, sequences, and conditions during data processing
and analysis, so as to ensure the accuracy and efficiency of the algorithm [10]. Based on the previous
analysis of the AdaGrad adaptive weight algorithm, this study integrates the AdaGrad intelligent
algorithm with the LMS adaptive filtering algorithm, and realizes parameter optimization by adjusting
the learning rate and parameter frequency of the algorithm at different stages. This embodies an
adaptive learning rate concept:

(1) Atthe initial stage of iteration, the current position is far from the optimal point, so a large learning
rate p is adopted.

(2) As the number of iteration steps increases and the model gradually approaches the optimal point
where the optimal solution is located, the learning rate p can be reduced accordingly.

Such a design enables the learning rate to automatically adapt to the gradient changes during the
optimization process, and the parameter iteration formula is as follows:

st (ZI - (0, (12)

The learning rate of this method is obtained by multiplying the current learning rate by the reciprocal
of the sum of the squared gradients from the previous iteration, thereby enabling the automatic
adjustment of the learning rate according to gradient changes.

In the improved LMS algorithm, this study draws on this idea and incorporates an adaptive learning
rate mechanism based on historical gradient information, allowing the algorithm to independently
updatethe step size for each weight parameter. The algorithm flow after the preliminary improvement
is shown in the table below:

Table 1. Steps of the AdaGrad-LMS Algorithm

Algorithm Adagrad-LMS
1 Initialize: isr is the length of input xn, rps is for numerical stability, and M is the order

2  for k=M:isr
3 Obtain M sampling points of the current input xn and assign them to x
4 Current output Y = (W) *X
5 Calculation error €(n) =d(n)—y(n)
6 Compute gradient grad =e(n) *x

Update accumulated squared gradients r=0.96%r+grad *grad;
Update Weights W (:,k) =W (:,k =1)+mu/ (rps +sqrt(r)) * grad
9 Calculate filtered output yn(k) =W (;, k). *Xx
10 end
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It can be seen from Table 1 that the gradient descent algorithm takes the square root of the
accumulated historical gradients as the denominator during the iteration process. This causes the
learning rate to continuously decrease and eventually approach zero, leading to the premature
termination of the algorithm before it reaches the optimal solution. To address this problem, the
RMSProp algorithm is now introduced to improve the gradient descent-based LMS algorithm.

The improvement of the LMS algorithm using the AdaGrad gradient descent algorithm represents a
fundamental optimization approach [11]. This method lacks an iterative decay mechanism and only
dynamically adjuststhe learning rate by accumulating the sum of squared historical gradients. Such
an adjustment tends to cause the learning rate to prematurely enter a monotonically decreasing state
as the iteration progresses, thereby affecting the subsequent optimization performance of the
algorithm. Therefore, a decay coefficient p is introduced to adjust the update method of the
accumulated squared gradients, which is modified to root mean square propagation. The iteration
formula is as follows:

U

05 = 95—1 - T gs—l (13)
V, =0y (14)

v, = v, ; +(1-a)(g,,)? (15)

During the optimization of the LMS algorithm, the term root mean square refers to the square root of
the mean of the squared gradients, while propagation means incorporating historical gradient data
into the current gradient update process. Based on this logic, the core of the optimization process lies

in adjusting the 7th step in Table 1 and redesigning the update method of the coefficient W(n) in
accordance with Equation (8). After the above improvements, the steps of the new algorithm are
presented in Table 2.

Table 2. Steps of the RMSProp-LMS Algorithm

Algorithm RMSProp-LMS
1 Initialization: isr is the length of the input xn, error e(n), numerical stability constant rps,
order M, and decay factor p
2 fork=M :isr

3 Obtain M sample points of the current input xn and assign them to x
4 Current output Y = (W) * X
5 Calculation error €(n)=d(n)—y(n)
6 Compute the gradient grad =en*x
7 Update accumulated squared gradients = p*r+ p(1- p)*grad *grad
8 Update Weights W (;,k) =W (:,k —=1) + mu/(rps +sqrt(r)) * grad
9 Calculate filtered output yn(k) =W (;,k) *Xx
10 end

It can be seen from Table 2 that, compared with Table 1, the core adjustment of the improved
algorithm is reflected in the calculation logic of the accumulated squared gradients in the 7th step,
with a decay coefficient p added. Specifically, the new root mean square obtained by processing the
squared gradient values through exponentially weighted moving average can form a smoothed
estimate of the magnitude of the parameter gradients, thereby providing a reliable basis for the
learning rate adjustment of each parameter. This calculation method of historical squared gradients
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based on exponentially weighted moving average can gradually weaken the impact of early gradients
on the current step size adjustment as the iteration progresses. It can not only maintain the effective
learning rate required by the algorithm and avoid the learning rate from falling into an extremely
small state prematurely, but also specifically address the core problem of the rapid decline of the
learning rate in gradient descent algorithms.

3.2. Algorithm Optimization

Now, parameter optimization is performed on the improved algorithm. According to the literature
investigation, the performance optimization of the RMSProp-LMS algorithm can be achieved through
parameter adjustment, involving four key parameters: algorithm order, initial weight, learning rate,
and maximum number of iterations. This study first conducts a parameter optimization research on

the RMSProp-LMS algorithm to explore its optimal performance.
(1) Adjustment of Algorithm Order

The algorithm order is a key factor affecting prediction accuracy, and a reasonable order setting is an
important prerequisite for the algorithm to achieve excellent performance [12]. In this study, 20% of
the total data volume is initially selected as the algorithm order, corresponding to a specific value of
150. Figure 2 presents the algorithm error distribution when the order is set to 100, from which it can
be observed that the error values of multiple sampling points have exceeded 0.2000. Considering that
the amplitude of the original signal is 0.16, this error level is beyond the acceptable range. Simulation
results show that the average error of the algorithm under this order is approximately 0.2135, with a
time complexity of 0.0083 s. The overall performance fails to meet expectations and thus requires
further optimization. Two approaches will be adopted subsequently to adjust the order parameter: one
is to increase the order gradually, and the other is to decrease the order appropriately, so as to explore
the optimal parameter configuration.

RMSProp-LMS Test Error
0.2 '

015 1
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005 [

0 . 11

0 250 500 750 1000
Sampling point

Figure 2. Algorithm Error Diagram at Order 100

The first optimization approach is to increase the algorithm order. Simulation tests are carried out
with different orders including 100, 130, 150, 170, 190 and 200. The results indicate that increasing
the order does not improve the algorithm performance; on the contrary, it leads to a continuous
deterioration of the performance. Taking the test results with an order of 200 as an example, in the
error distribution shown in Figure 3, the error values at multiple sampling positions have exceeded
0.25. Simulation data show that when the order is 200, the average error of the algorithm is
approximately 0.2678, with a time complexity of 0.0065 s. This error level has caused severe
interference to the original signal. Therefore, the first optimization approach is not feasible, and it is
necessary to switch to the second approach for further research.
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Figure 3. Algorithm Error Diagram at Order 200

The second optimization approach is to reduce the filter order. Simulation analyses are conducted
with orders including 40, 30, 20, 10, 5 and 4. Simulation results show that with the decrease of the
order, the average error of the algorithm presents a downward trend, but this trend is not continuous;
instead, there exists an obvious critical interval. When the order ranges from 4 to 10, the average error
reaches the minimum value; once the order is lower than 4, the average error starts to increase
inversely. Based on this, 4 is determined as the final order of the algorithm. Figure 4 shows the error
characteristic diagram when the order is 4, where the errors of the vast majority of sampling points
are controlled within 0.1800, with only a few sampling points exceeding this range. The
corresponding simulation dataare as follows: the average error is approximately 0.1309, and the time
complexity is 0.0064 s, indicating a favorable overall optimization effect.

RMSProp-LMS Test Error
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Figure 4. Algorithm Error Diagram at Order 4
(2) Adjustment of Initial Weight

The initial weight has a significant impact on algorithm accuracy, and an appropriate value needs to
be selected. Considering that the initial weight usually needs to be set toa small value, combined with
the results of literature investigation, 0.4 is selected as the initial weight for testing. Figure 5 shows
the error distribution underthis initial weight, where the errors of most sampling points have exceeded
0.6, and the errors of some points have even reached 1.4. Simulation data indicate that the average
error is approximately 0.5632 with a time complexity of 0.0065 s. The performance is unsatisfactory
and requires further adjustment. Inview of the fact that the current value of the initial weight is still

relatively large, it is necessary to reduce the initial weight to achieve the expected performance.
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Figure 5. Algorithm Error Diagram at Initial Weight of 0.4

Simulation analyses are carried out with different initial weight parameters including 0.2, 0.15, 0.1
and 0.05. The results show that with the decrease of the initial weight, the algorithm performance
shows a gradual optimization trend, but there exists a critical value characteristic: when the initial
weight is lower than 0.15, the algorithm will experience an abrupt increase in error when processing
part of the data. Based on the simulation results of multiple groups of data, 0.15 is finally determined
as the optimal initial weight. Figure 6 shows the error distribution diagram under this initial weight,
where the errors of most sampling points are controlled within 0.09. The corresponding simulation
data are as follows: the average error is approximately 0.0732, with a time complexity of 0.0063 s.

RMSProp-LMS Test Error
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Figure 6. Algorithm Error Diagram at Initial Weight of 0.15
(3) Adjustment of Learning Rate

Simulation tests are conducted with different learning rate parameters including 0.008, 0.006, 0.004,
0.002 and 0.001. The results show that the algorithm error follows a trend of first decreasing and then
increasing with the variation of learning rate, with the minimum error achieved when the learning
rate is set to 0.002. Figure 7 presents the error distribution diagram under this learning rate, where the
errors of most sampling points are controlled below 0.1. Simulation data indicate that the
corresponding average error is approximately 0.0674 with a time complexity of 0.0063 s, which fully
meets the expected design requirements.
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Figure 7. Algorithm Error Diagram at Learning Rate of 0.002

(4) Adjustment of Iteration Number

The iteration number is not only correlated with the algorithm error level, but also has an impact on
its time complexity. Therefore, when adjusting the iteration number, it is necessary to balance the
dual requirements of low error and low time complexity. Figure 8 presents the simulation
characteristic diagram of the iteration number, and the results show that: when the iteration number
exceeds 5, the error improvement effect tends to be stable, while the time complexity increases
significantly; when the iteration number is less than 5, although the time complexity decreases to a
certain extent, the error increases sharply. Based on a comprehensive trade-off between the two

factors, 5 is finally determined as the optimal iteration number.
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Figure 8. Simulation Diagram of Iteration Cycles

After parameter optimization, the final parameter configuration of the RMSProp-LMS algorithm is
as follows: order, initial weight, learning rate, and maximum iteration number. Figure 9 shows the
algorithm error distribution diagram after parameter debugging. The errors of the vast majority of
sampling points are controlled within 0.0900. Simulation results indicate that the average error of the
algorithm under this parameter configuration is 0.0473.
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Figure 9. Error Diagram of the RMSProp-LMS Algorithm

4. ALGORITHM SIMULATION AND ANALYSIS

After parameter optimization of the RMSProp-LMS algorithm, an experimental framework is
constructed by invoking the LMS filtering module and the RMSProp-LMS filtering module via the
model, and corresponding processing results are generated [13]. Thus, a simulation comparison
between the improved algorithm and the original algorithm is conducted under consistent
experimental conditions. The preliminary arrangement results of the time-domain waveforms before
and after filtering obtained from the experiment are shown in Figure 10. To simulate the complex
characteristics of data in real-world scenarios, the study introduces the AR noise model and the MA
noise model to perform secondary processing on additive white Gaussian noise (AWGN) for injecting
uncertainties. This processing method makes the experimental model more consistent with the
dynamic variation laws of the real world, thereby enhancing the authenticity and scene simulation
fidelity of the experiment.

10
<)
=)
S 0
o

500 1000 1500 2000 2500 3000

Time/ms
(a) Audio signal denoised by LMS

0 500 1000 11500 2000 2500 3000
Time/ms

(b) Audio signal denoised by RMSProp-LMS

Figure 10. Time-Domain Comparison Diagram of Denoising Performance between RMSProp-
LMS and LMS Algorithms

It can be concluded from the results in Figure 10 that the improved algorithm can still effectively
complete the filtering task in harsh channel environments. From the perspective of time-domain
waveforms, although the waveforms after denoising exhibit obvious distortion in the initial stage,
they can quickly approximate the waveforms of the original audio signals and gradually achieve
signal restoration. In addition, according to the parameter conditions set in the experiment, the initial
step size is determined as 0. The filtering performance can be further optimized by adjusting the
step size in subsequent research. Based on this, a more detailed comparative analysis of the filtering

139



effects of the improved algorithm will be carried out in the following content, so as to further verify
the effectiveness and superiority of the improved algorithm.

This experiment is designed on the basis of the block diagram of the equalizer principle. First, the
signal-to-noise ratio (SNR) of the input signal is set to -6 dB. Then, by adjusting the specific value of
the filter order M in the initial parameters, independent simulation experiments are conducted under
two parameter configurations of Mland M2, focusing on observing the time-domain waveform
characteristics of the residual noise after filtering. The experimental results show that after the
algorithm enters the convergence state, the residual noise in the latter half of the time-domain
waveform shows a consistent variation trend, and the noise amplitude is maintained at a low level.
To more clearly demonstrate the dynamic variation law of noise in the pre-convergence stage, the
time-domain waveform of the first 3 seconds is selected for analysis, and the specific results are
shown in Figure 11(a), (b), (c) and (d).
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Figure 11. Comparison of residual noise waveforms between RMSProp-LMS and LMS

Under the condition of filter order M=32, the time required for the noise level of the two algorithms
to reach a steady state after filtering was observed. The results show that the convergence time of the
RMSProp-LMS algorithm is approximately 0.5 s, while that of the traditional LMS algorithm is 0.65
s, representing a convergence speed improvement of about 23%. In terms of noise amplitude, the
RMSProp-LMS algorithm exhibits a lower steady-state amplitude level, indicating a more favorable
filtering performance. When the order is reduced to M=4, the difference in convergence speed
between the two algorithms further widens: the RMSProp-LMS algorithm can achieve convergence
in only about 0.23s, whereas the traditional LMS algorithm requires 0.4s, corresponding to a
convergence speed improvement of approximately 60%. This demonstrates that the RMSProp-LMS
algorithm has a more significant convergence performance advantage under the low-order filter
configuration.

In terms of mean squared error (MSE), different filter orders have a significant impact on algorithm
performance. At a filter order of M=32, the filtered output MSE of the traditional LMS algorithm is
1.433x10-3 dB, while the MSE of the improved RMSProp-LMS algorithm after filtering is reduced
to 1.398x<10-3dB, representing a 2.67% reduction in error amplitude compared with the traditional
algorithm. When the filter order is M=4, the steady-state error advantage of the improved algorithm
is further highlighted: the filtered MSE of the traditional LMS algorithm is 1.304><10—3dB, while that
of the RMSProp-LMS algorithm is only 0.795x10 —3dB, with a 42% reduction in error amplitude.
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To eliminate the accidental error that may exist in a single experiment and ensure the reliability of
the experimental results, further Monte Carlo simulation experiments were conducted. A total of 200
independent simulation tests were completed by gradually increasing the input signal-to-noise ratio
(SNR). The relevant steady-state error data of the algorithms under the above different filter orders
were statistically organized, and the average value of each index was calculated. The final
summarized results are presented in Table 3.

Table 3. Monte Carlo Simulation Data of the LMS Algorithm

Algorithm complexity Algorithm Name Convergence Time / s MSE/dB
M=32 LMS 100 1.564
RMSProp-LMS 89 1.359

Average Improvement Rate 11% 13.1%
M=4 LMS 105 1.556
RMSProp-LMS 32 1.225

Average Improvement Rate 69.5% 21.27%

It can be concluded from the statistical data in Table 3 that, verified by multiple repeated simulation
tests, the RMSProp-LMS algorithm maintains superior convergence accuracy and convergence speed
compared with the traditional LMS algorithm under both filter order configurations of M=4 and
M=32. In particular, such performance advantages are more prominent when the filter order is at a
low level. This result is highly consistent with the core characteristics of the RMSProp-LMS
algorithm. Moreover, with the increase in the input signal-to-noise ratio (SNR), the improvement of
the output SNR achieved by the improved algorithm over the original algorithm becomes increasingly
significant. Simulation results show that in harsh channels with an input SNR above -6 dB, the
RMSProp-LMS algorithm achieves an average convergence speed improvement of 69.5% and an
average output SNR improvement of 17.7% compared with the original LMS algorithm.

5. CONCLUSION

This paper focuses on the goal of improving the anti-interference capability of the pressure test system,
and completes the improvement and verification of the adaptive filtering algorithm. Aiming at the
problem of complex noise interference existing in the experimental environment of the pressure test
system, a denoising method based on the improvement of the adaptive filtering algorithm is proposed,
and the superiority of the improved algorithm is verified. To address the problems of slow
convergence speed and insufficient time-varying signal tracking capability in non-stationary noise
environments, the RMSProp adaptive learning rate adjustment mechanism is introduced to optimize
the algorithm weight update process. By assigning adaptive learning rates to different parameters
during the iteration process, the problem of convergence stagnation caused by premature learning rate
attenuation is effectively avoided. By suppressing the oscillation in the gradient update process, the
stability and robustness in time-varying noise environments are significantly improved. Experimental
results show that the improved algorithm achieves a 69.5% increase in convergence speed and a 17.7%
improvement in signal-to-noise ratio (SNR), which enhances the accuracy of signal processing and
the anti-interference capability of the system.

Although the RMSProp-LMS algorithm exhibits excellent filtering performance in environments
with an SNR of -6 dB, its performance degrades significantly in strong interference scenarios with
lower SNRs. On the one hand, gradient calculation is susceptible to outliers in strong noise
environments, leading to an increase in the estimation deviation of accumulated squared gradients
and thus causing distortion in learning rate adjustment. On the other hand, the algorithm has a strong
dependence on the differences in statistical characteristics between the input signal and noise. When
the noise exhibits non-Gaussian and impulsive characteristics, the optimization objective based on
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mean squared error (MSE) minimization cannot effectively separate signal and noise components. As
a result, residual interference remains in the filtered signal, making it difficult to meet the high-
precision testing requirements in extremely harsh environments.
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