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ABSTRACT  

Accurate determination of the rock mass's mechanical parameters directly affects engineering 
projects' safety and cost-effectiveness. Based on an extensive literature review, a dataset containing 
318 sets of rock mass parameters is compiled to support our research. Key rock-mass descriptors—
Q, RMR, GSI, UCS, the rock material constant m_i, and the disturbance factor D—are first 
standardized to mitigate scale effects. A correlation-coefficient matrix is then computed and 
visualized with a heatmap to quantify inter-variable relationships. The results indicate a strong 
positive correlation between Q and RMR and a moderate negative correlation between m_i and D. 
Some mechanical variables show near-unity positive correlations with indicators such as RMR and 
UCS, suggesting highly consistent trends. Pairwise distribution analyses further reveal an 
approximately linear relationship between GSI and RMR, a logarithmic tendency between Q and 
RMR, and clustered patterns in the m_i–D space, implying potential multicollinearity and nonlinear 
interactions. 
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1. INTRODUCTION 

Engineering rock mass refers to rock mass in the field of rock engineering, which mainly includes 
underground engineering rock mass, sloping rock mass, and dam foundation rock. As well as the 

discrepancies in the development of structural planes within the rock mass, the mechanical properties 
of the rock mass are very complex. Accurate determination of mechanical parameters directly affects 

the safety and reasonableness of construction costs. 

Since Vernadsky [1], a Russian investigator in the 18th century proposed a five-level rock state 
classification, dozens of engineering rock mass classification methodologies have been established 

to evaluate rock mass stability and determine support methods. At present, the common approaches 
for evaluating and classifying rock mass quality can be displayed in the following. Deere [2] proposed 

the rock quality designation index (RQD), which divided the rock mass quality grade by the integrity 
of the drilling core in 1964. In 1974, based on the RQD, Barton et al. [3] proposed a Q classification 
system with six parameters: RQD, structural plane roughness coefficient, structural plane group 

alteration coefficient, groundwater reduction coefficient, and stress intensity reduction coefficient. 
Bieniawski [4] also suggested a rock mass rating (RMR) classification method based on the RQD, 

which takes in rock strength, joint spacing, groundwater conditions, and joint direction. In 1994, Hoek 
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and Brown [5]) based on a large amount of rock test data, through the analysis of these data, summed 
up the geological strength index method, the so-called GSI rock mass classification approach. In 
addition, rock mass quality evaluation and classification methods with strong influence also include 

mining rock mass rating (MRMR) classification [6], slope mass rating (SMR) classification [7], and 
Chinese slope mass rating (CSMR) classification [8]. However, the complex mechanical properties 

of rock masses and the reliance on human experience in traditional theories could create challenges, 
particularly when dealing with large volumes of data. This dependence not only lessens efficiency 

but also increases the likelihood of human error. 

This study selected three representative empirical formulas for rock mechanics parameters, and used 
318 sets of rock mechanics parameters to conduct a correlation analysis of these parameters, aiming 

to reveal the relationships among rock mechanics parameters. 

2. TRADITIONAL ROCK QUALITY EVALUATION METHODS 

The Q system is an approach for classifying rock mass quality, proposed by Barton and coworkers in 

1974 based on the RQD, and is extensively utilized at present. Initially aimed at determining support 
schemes during tunnel construction, after long-term development and improvement, it has also been 

broadly applied in the classification of surrounding rock in underground caverns, rock mass quality 
classification of rock foundations, and rock mass quality classification of high steep slope 

hydropower engineering. The calculation formula for the Q value reads:  

 

𝑄 =
𝑅𝑄𝐷

𝐽𝑛
·

𝐽𝑟

𝐽𝑎
·

𝐽𝑤

SRF
                                     (1) 

 

Where RQD represents the rock quality index, 𝐽𝑛 denotes the number of joint sets, 𝐽𝑟 is the joint  

roughness coefficient, 𝐽𝑎  signifies the joint alteration impact coefficient, 𝐽𝑤  is the joint water 

reduction coefficient, and SRF stands for the stress reduction factor. 

The RMR evaluation system is a rock mass quality grading approach proposed by Bieniawski [4] 

who summarized more than 300 tunnel projects. The RMR method includes six indicators for scoring 
each rock mass stability factor, and the sum of various scores represents the RMR. The value of rock 

mass, RMR formula, is given as follows: 

 
𝑇𝑅𝑀𝑅 = 𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸 + 𝐹                             (2) 

 

Where 𝑇𝑅𝑀𝑅  denotes the total score of the RMR method; A is the strength score of complete rock 
material; B represents the rock drilling coring quality score; C signifies the joint spacing score; D is 

the joint state score; E represents the groundwater state score; F denotes the relationship between the 

occurrence of structural plane and the direction of engineering. 

The Hoek-Brown criterion represents an empirical criterion utilized for describing the strength and 
deformation properties of rock materials, proposed by South African rock mechanics experts Evert 
Hoek and John Bray in 1980. This criterion was subsequently improved many times to form the 

generalized Hoek-Brown criterion as follows: 

 

𝜎1 = 𝜎3 + 𝜎𝑐𝑖(
𝑚𝑏𝜎3

𝜎𝑐𝑖
+ 𝑠)𝑎

                               (3) 

 

Where 𝜎1 and 𝜎3 signify the maximum principal stress and the minimum principal stress of rock 

mass at failure, respectively. 𝜎𝑐𝑖 represents the uniaxial compressive strength of intact rock; 𝑚𝑏, 𝑠, 
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and 𝑎 signify the material constants related to rock mass properties, which can be converted into 

functions of GSI and D. Their corresponding formulas can be provided by: 

 

𝑚𝑏 = 𝑚𝑖 exp (
𝐺𝑆𝐼−100

28−14𝐷
)

𝑠 = exp (
𝐺𝑆𝐼 −100

9−3𝐷
)

𝑎 = 0.5 [exp (−
𝐺𝑆𝐼

15
) − exp (−

20

3
)] ∕ 6

                        (4) 

 
Where GSI stands for a geological strength index, which reflects the weakening degree of rock mass 

strength by various geological conditions from two aspects: the structural characteristics of rock mass 

and the surface condition of joints. The rock material constant (𝑚𝑖) can be determined by performing 
a triaxial test on the intact rock samples. Factor D represents a disturbance factor, which reflects the 
disturbance degree of rock mass due to blasting and stress relaxation, and the corresponding value 

varies from 0 to 1. 

3. DATA ACQUISITION AND DATA CLEANING 

3.1. Data Acquisition and Data Cleaning 

Our dataset comprises 318 sets of rock mass parameters sourced from published literature [10-18]. 

According to various types of data sources, they were divided into four categories: tunnel engineering 
(A, 58 cases), slope engineering (B, 65 cases), underground coal mine engineering (C, 116 cases), 
and other geotechnical engineering (D, 79 cases). These various categories include a wide range of 

factors and indicators, including the rock uniaxial compressive strength (UCS), geological strength 

index (GSI), rock material constant (𝑚𝑖), disturbance factor (D), RMR score (RMR), and Q score 
(Q). The statistical parameters of different characteristics are presented in Table 1, and the 
corresponding box diagram is illustrated in Figure 1. The meter character in Fig. 1 indicates the 

abnormal value or extreme situation, the horizontal solid line in the box indicates the median, the red 
dot indicates the mean value, and the upper and lower horizontal lines at the boundary of the box 

represent the third and first quarter points, respectively. 

Table 1 provides essential statistical parameters of rock mass evaluation indicators across a wide 
range of geotechnical engineering categories. The statistical distribution reveals distinct 

geomechanical characteristics among the four engineering types. As is seen, tunnel engineering 
exhibits superior rock mass quality with higher Q scores, RMR scores, and GSI values. Conversely, 

underground coal mine engineering demonstrates significantly deteriorated rock mass conditions, 
indicating highly fractured and weaker rock masses. The uniaxial compressive strength values follow 
a similar pattern, with tunnel engineering exhibiting the highest mean value and underground coal 

mine engineering exhibiting the lowest. These systematic variations in geomechanical properties 
across engineering types provide critical insights for developing robust prediction algorithms capable 

of accommodating diverse rock mass conditions encountered in practical geotechnical applications. 

Figure 1 illustrates the statistical distribution characteristics of various rock mass evaluation 
indicators through box plot analysis. The presented distributions demonstrate noticeable 

heterogeneity in geomechanical properties, particularly in Q scores for tunnel engineering 
applications where values span over two orders of magnitude. The RMR score distributions also 

reveal smaller interquartile ranges for slope engineering compared to tunnel projects, indicating more 
consistent discontinuity conditions in slope applications. Additionally, the GSI distributions follow 
similar patterns to RMR, confirming the rational theoretical correlations between these two 

classification systems. The notable outliers in UCS and 𝑚𝑖 values, particularly in underground coal 
mining applications, highlight potential challenges in parameter estimation for exceptional geological 
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conditions. These distribution characteristics informed our selection of machine learning algorithms 
capable of handling both the central tendencies and the extreme values encountered in diverse 

geotechnical engineering contexts. 

      

Figure 1. Box plots of various rock mass evaluation indicators in the dataset 

 

Table 1. Statistical parameters of various rock mass evaluation indicators in the rock mass 

Engineering type Value type Q RMR GSI 𝑚𝑖 D UCS (MPa) 

A Maximum 207 107 92 36 1 326 

Minimum 0.18 11.8 28.51 5 0 30 

Mean 69.04 78.42 72.95 25.4 0.34 160.67 

Standard deviation 60.52 27.36 18.24 10.05 0.24 63.96 

B Maximum 119 99.5 87 34 1 257 

Minimum 0.09 3 22.5 5.2 0.2 30 

Mean 17.06 62.41 62.27 19.73 0.35 130.4 

Standard deviation 19 22.33 15 7.72 0.24 47.24 

C Maximum 55 89 80 48.56 0.8 260 

Minimum 0.04 5 14 4 0.2 10.44 

Mean 2.32 36 45 12.46 0.5 96.53 

Standard deviation 5.37 16.67 11.35 6.65 0.24 58.43 

D Maximum 133 101 88 35 0.8 271 

Minimum 0.12 6.5 25 4 0.3 17.3 

Mean 20.36 60 60.56 17.62 0.38 125.3 

Standard deviation 28.88 24.1 16.05 9.11 0.26 60.53 

3.2. Data Cleaning 

To ensure the prediction effectiveness, data cleaning is a crucial step that addresses errors, missing, 

incomplete, and redundant data in the dataset to enhance data accuracy, reliability, and practicality. 
Some of the vacancy values are supplemented by referring to the RMR and GSI conversion formula 

proposed by Hoek and Brown [5] and the GSI and Q conversion formula proposed by Hoek et al [9]. 

The specific formulas are as follows: 

 

𝐺𝑆𝐼 = RMR89 − 5                                   (5) 
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𝐺𝑆𝐼 = 9 ln(𝑄) + 44                                 (6) 

 
The six selected features in geotechnical engineering cases are all numerical data, and the value ranges 

of different features are different, and even the order of magnitude may be different. To obtain 
accurate classification results and to ensure the role of each feature, the features are standardized to 
reduce the effect of scale and feature dimension on the model. In the present investigation, the 

StandardScaler approach is adopted. The specific implementation algorithm is to subtract the mean 
and divide the standard deviation, so that each feature in the dataset possesses a mean of zero and a 

standard deviation of one, to ensure that the features are on the same scale. 

Four categories of geotechnical engineering data are relatively unbalanced in the collected dataset. 
The number of examples of tunnel engineering (A, 58 cases), slope engineering (B, 65 cases), and 

other geotechnical engineering (D, 79 cases) is remarkably less than that of underground coal mining 
engineering (C, 116 cases). When encountering unbalanced datasets, the most common machine 

learning algorithms could not achieve good results. This is essentially attributed to the fact that most 
machine learning models tend to predict the majority class to minimize the error rate. During the 
training process, the model often learns the features of the majority class while neglecting the features 

of the minority class. This results in the model having poor recognition ability for the minority class. 

After careful consideration of various sampling methods, random oversampling is methodically 

chosen for the present investigation instead of approaches like SMOTE (synthetic minority over-
sampling technique) or adaptive sampling. This choice is based on three key advantages; First, 
random oversampling maintains data authenticity by preserving actual rock mass parameters, while 

other methods may generate synthetic samples that deviate from physical reality. Second, it ensures 
model reliability by retaining the original data distribution characteristics without introducing 

artificial patterns that could increase prediction uncertainty. Third, its computational simplicity and 

result traceability make it more practical for engineering applications. 

To implement this approach, a small number of samples are randomly copied to increase their 

frequency until achieving a balanced distribution across a vast range of geotechnical engineering 
categories. To ensure model generalizability and prevent overfitting, the balanced dataset is randomly 

mixed and divided into training and test sets in a 7:3 ratio, with the random seed set to 0.8 during 

segmentation to ensure reproducible results.  

4. SHAP PARAMETER SENSITIVITY ANALYSIS 

The SHAP sensitivity analysis results demonstrate clear physical rationality in how various factors 
contribute to rock mass mechanical parameters. The corresponding specific procedures of such an 

analysis are provided in the following. 

For rock mass uniaxial compressive strength (𝜎𝑐𝑚𝑎𝑠𝑠 ), the UCS parameter exhibits the highest 
influence at 28.33%, highlighting its role as the core parameter in rock mass strength calculation. The 
GSI indicator (20.44%) and Q score (20.54%) demonstrate similar and significant influences, 

reflecting the deterministic role of rock mass structural characteristics on strength. The rock 

constitutive parameter 𝑚𝑖 (10.18%) has relatively less influence, whereas the disturbance factor D 

(2.68%) demonstrates a minimal impact. 

Regarding rock mass deformation modulus (Em), GSI dominates with 38.28%, confirming that the 

degree of joint development is crucial in determining rock mass deformation capability. The 
significant influences of Q (28.98%) and RMR (25.58%) further validate the practicality of rock mass 

classification systems in evaluating deformation modulus. The minor influences of UCS (2.35%) and 
𝑚𝑖 (1.09%) align with the theory that the deformation modulus is primarily controlled by structure. 



 

111 

For cohesion (C), UCS holds absolute dominance at 61.16%, indicating that cohesion primarily 
originates from the bonding strength of the rock material itself. The Q score (12.18%) and GSI 
indicator (10.50%) follow, suggesting limited weakening effects of structural planes on cohesion. The 

parameters 𝑚𝑖 (3.90%) and D (3.59%) exhibit the minimal influence. 

Concerning the internal friction angle ( 𝜙 ), the rock type parameter (𝑚𝑖 ) contributes the most  
(38.58%), emphasizing its importance in controlling shear strength. In addition, the GSI indicator 
(16.59%) and Q score (16.00%) exhibit similar influences, reflecting the significant impact of the 
structural planes on the friction angle. The disturbance factor (D) (13.21%) also demonstrates a higher 

influence compared to other parameters, indicating substantial effects of this on the joint surface 
friction characteristics. The minor influence of the UCS factor (3.92%) corresponds to the indirect 

influence of the intact rock strength on the friction angle. 

Overall, the SHAP analysis results somehow confirm the consistency among the influencing factors 
of the rock mass mechanical factors and the theoretical models, providing a reliable theoretical basis 

for rock mass engineering parameter prediction. 

Table 2. SHAP parameter sensitivity. 

Parameter 𝜎𝑐𝑚𝑎𝑠𝑠  Em C 𝜙 

UCS 28.33% 2.35% 61.16% 3.92% 

Q 20.54% 28.98% 12.18% 16.00% 

GSI 20.44% 38.28% 10.50% 16.59% 

RMR 17.83% 25.58% 8.66% 11.71% 

𝑚𝑖 10.18% 1.09% 3.90% 38.58% 

D 2.68% 3.72% 3.59% 13.21% 

5. CONCLUSION  

This study compiled a literature-based dataset of 318 rock-mass cases and investigated the inter-

relationships among key descriptors (Q, RMR, GSI, UCS, 𝑚𝑖, and disturbance factor D) to support  
reliable prediction of rock-mass mechanical parameters. Missing values were supplemented using 

commonly adopted conversions, and all features were standardized to remove scale effects. SHAP-
based sensitivity analysis provides an interpretable assessment of factor contributions, showing that 
UCS dominates cohesion (61.16%) and is also the most influential factor for rock-mass compressive 

strength, GSI contributes most to the deformation modulus Em (38.28%), mi is the primary contributor 

to 𝜙  (38.58%), and D has a non-negligible influence on 𝜙  (13.21%). Overall, the combined  
correlation and SHAP analyses yield physically consistent insights and provide a practical basis for 

feature selection and robust, interpretable prediction of rock-mass mechanical parameters. 
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