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ABSTRACT  

Object detection is an important task in computer vision, aimed at detecting and recognizing the 
position and category of target objects from images or videos. With the rise of deep learning, the 
accuracy and efficiency of object detection have significantly improved, especially the application of 
convolutional neural networks (CNN) in this field, which has made significant breakthroughs in object 
detection methods. This article provides an overview of the development history of object detection, 
with a focus on classic object detection algorithms, deep learning methods, and their evolution. It 
explores the evaluation criteria and challenges faced by object detection, and looks forward to future 
development trends. 
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1. INTRODUCTION 

Object detection is one of the core problems in computer vision, which aims to find all interested 
target objects from an image and determine their categories and positions (through bounding boxes). 

Unlike image classification tasks, object detection not only requires classifying objects in the image, 
but also accurately marking the spatial position of objects, making it a complex and challenging task 

in computer vision. 

In recent years, with the development of deep learning, especially convolutional neural networks 
(CNN) [1-5], object detection technology has made significant progress. Deep learning methods have 

made significant breakthroughs, especially in problems such as multi-scale, complex backgrounds, 
occlusion, and real-time detection. However, despite significant progress, object detection still faces 

many challenges, such as detecting small objects, recognizing multiple types of targets, and class 

imbalance. 

This review will explore in detail the background, development history, main algorithms, evaluation 

criteria, challenges faced, and future research directions of object detection, aiming to provide 

valuable references for scholars and engineers engaged in related research. 
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2. THE DEVELOPMENT HISTORY OF OBJECT DETECTION 

2.1. Traditional Method 

Before deep learning, object detection mainly relied on manual features and traditional machine 

learning methods. The core idea of these methods is to describe the objects in the image by designing 
some feature extraction algorithms, and to perform object recognition through classifiers such as 

support vector machines, decision trees, etc. 

2.1.1. Haar features and AdaBoost  

In the late 1990s, the combination of Haar features [6-7] and AdaBoost [8-9] algorithm became a 

classic object detection method, particularly achieving great success in face detection. The Haar 
feature calculates the brightness difference of an image through rectangular regions, which has the 

characteristics of simple calculation and fast speed. AdaBoost is used to select the optimal features 
from a large number of weak classifiers and perform weighted combinations. However, the main 

issue with this method is its poor robustness when the background is complex.  

2.1.2. HOG features and SVM 

In 2005, Dalal and Triggs proposed the HOG feature [10-11] and combined it with support vector 

machine [12-13] for pedestrian detection. HOG features can effectively capture the shape and contour 
of objects by calculating the local gradient direction information of the image. The advantage of this 
method lies in its good robustness, especially for pedestrian detection, which has a wide range of 

applications. 

2.1.3. Sliding Window and Feature Pyramid 

In traditional methods, sliding a window [14-15] is a common technique that detects targets in an 
image by sliding a fixed size window at different scales. In order to improve detection accuracy and 
speed, the feature pyramid [16] method is commonly used, which processes targets of different sizes 

through multi-scale feature representation. However, sliding windows have high computational 

overhead and poor detection performance for complex backgrounds and high-density targets. 

2.2. The Rise of Deep Learning 

The successful application of deep learning, especially convolutional neural networks (CNN), in 
image classification tasks has provided strong impetus for the advancement of object detection. CNN 

can automatically learn complex features from raw pixels to high-level semantics, greatly reducing 

the workload of manual feature extraction. 

2.2.1. R-CNN 

In 2014, R-CNN (Region based CNN) [17-18] was proposed, marking a breakthrough in the 
application of deep learning in object detection. R-CNN first uses selective search to generate 

candidate regions, then uses CNN to extract features from each candidate region, and finally uses 
SVM for classification. Although R-CNN has high detection accuracy, its computational efficiency 

is low because each candidate region requires separate forward propagation.  

2.2.2. Fast R-CNN 

In order to solve the problem of low computational efficiency in R-CNN, Girshick proposed Fast R-

CNN [19-20] in 2015. Fast R-CNN extracts features by performing a convolution operation on the 
entire image, and uses RoI Pooling to pool each candidate region, thus avoiding the inefficient 

problem of repeated calculations in R-CNN. Fast R-CNN has made significant improvements in both 

accuracy and speed. 
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2.2.3. Faster R-CNN 

In 2015, Faster R-CNN [21-22] further improved the efficiency of object detection by introducing 
Region Proposal Networks (RPNs). RPN achieves end-to-end training by sliding windows on 

convolutional feature maps to generate candidate regions. The biggest advantage of Faster R-CNN is 
that it simultaneously performs object detection and region proposal by sharing convolutional features, 

greatly improving detection speed. 

2.3. Single Stage Detection Method 

Although two-stage methods based on region proposals, such as R-CNN and Faster R-CNN, have 

shown outstanding accuracy, their computational complexity is relatively high. Therefore, 
researchers have proposed single-stage object detection methods. These methods avoid the region 

proposal stage and improve detection speed by directly predicting the target category and position on 

the entire image. 

2.3.1. YOLO 

YOLO [23-24] was proposed by Redmon et al. in 2016, using a single convolutional neural network 
for object detection. YOLO treats object detection tasks as regression problems, where the network 

outputs both the object category and bounding box coordinates during a forward propagation process. 
The advantage of YOLO is its extremely fast detection speed, making it suitable for real-time 

detection tasks. Although YOLO has high accuracy, it has certain limitations in small object detection. 

2.3.2. SSD 

SSD [25-26] proposes a multi-scale convolutional feature map that can simultaneously perform object 

detection on feature maps of different scales. SSD performs well in processing multi-scale targets by 
introducing multiple detectors. Similar to YOLO, SSD is also a single-stage detection method, but it 

has improved accuracy. 

2.3.3. RetinaNet 

RetinaNet [27-28] solves the problem of class imbalance by introducing focal loss. Focus loss can 
suppress the influence of background categories and improve the model's detection ability for rare 

targets. RetinaNet performs well in single-stage detection methods, especially when dealing with 

target categories with long tail distributions. 

3. EVALUATION CRITERIA AND CHALLENGES FOR OBJECT 
DETECTION 

3.1. Evaluation Criteria 

The evaluation of object detection typically relies on the following criteria: 

(1) Average precision (mAP) 

Mean Average Precision (mAP) is the most commonly used evaluation metric in object detection. 
MAP calculates the average precision (AP) for each category, and then averages the AP for all 

categories. The calculation method of AP is based on different Intersection over Union (IoU) 

thresholds.  

(2) Precision and Recall 

Accuracy and recall are commonly used performance evaluation metrics, representing the proportion 
of correct targets in the detection results and the proportion of actual targets detected, respectively. 

The comprehensive performance of accuracy and recall is usually evaluated by F1 score. 
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3.2. Challenge 

The main challenges faced by object detection include: 

(1) Small object detection: Small objects have weaker features and are easily interfered by 

background, resulting in lower detection accuracy. The existing multi-scale detection methods have 
made some improvements in small object detection, but still find it difficult to completely solve this 

problem. 

(2) Multi category and long tail problems: The distribution of categories in object detection is often 
uneven, with fewer samples in certain categories, resulting in lower detection accuracy of the model 

on these categories. 

(3) Real time detection: In some applications that require high real-time performance, such as 

autonomous driving and monitoring, object detection models not only need to maintain high accuracy, 

but also need to have high processing speed 

4. RESEARCH PROSPECTS 

The field of object detection is continually evolving, with significant advancements driven by deep 
learning and neural network architectures. However, several key areas remain for further 

improvement and innovation. 

(1) Improving Small Object Detection: Despite recent progress, detecting small objects continues to 
be a major challenge. Future research should focus on developing more effective multi-scale 

architectures, utilizing attention mechanisms or advanced feature fusion strategies to enhance the 
representation of small objects. Moreover, integrating temporal information in video-based object 

detection could further aid in identifying small moving objects. 

(2) Handling Class Imbalance: As object detection often faces imbalanced datasets with many more 
background samples than foreground objects, addressing class imbalance remains critical. New loss 

functions, like focal loss (used in RetinaNet), and techniques such as hard negative mining could be 
further refined and applied to improve the model’s performance in detecting underrepresented 

categories. 

(3) Real-Time Detection: Achieving high accuracy while maintaining real-time processing is crucial, 
especially for applications in autonomous vehicles, security, and robotics. To address this, future 

research should explore novel network architectures optimized for speed without sacrificing detection 
precision. This may involve developing lightweight models, pruning techniques, or hardware 

acceleration methods tailored for mobile and embedded systems. 

(4) 3D Object Detection and Scene Understanding: Expanding object detection from 2D images to 
3D space is an emerging research frontier. By incorporating depth information from LiDAR or stereo 

cameras, researchers can improve the robustness of detection in environments with complex 
geometries, such as urban and indoor scenes. Future methods should focus on end -to-end learning 

systems that combine image and point cloud data for improved scene understanding. 

(5) Cross-Domain and Unsupervised Learning: The effectiveness of object detection models often 
diminishes when trained on one dataset and applied to another (cross-domain problems). To mitigate 

this, unsupervised or semi-supervised learning techniques should be explored to reduce the 
dependency on large labeled datasets, especially in domains where annotation is expensive or 

impractical. 

(6) Multimodal and Multitask Learning: Future research should focus on combining object detection 
with other tasks such as semantic segmentation, tracking, and scene recognition in a unified 

framework. Multimodal approaches that integrate data from various sensors (e.g., visual, auditory, 
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and tactile) could lead to more comprehensive models capable of making robust predictions in diverse 

environments. 

5. SUMMARY 

Object detection remains one of the most challenging and dynamic areas of computer vision, with a 
variety of applications across industries such as autonomous driving, surveillance, healthcare, and 

robotics. This review has provided an overview of the evolution of object detection, from traditional 

feature-based methods to the more recent deep learning-driven approaches. 

Traditional methods, such as Haar features combined with AdaBoost, and HOG features with SVM, 

paved the way for early successes in face and pedestrian detection. However, these techniques were 
limited in handling complex scenarios, such as varied object scales and challenging backgrounds. 

The introduction of deep learning, particularly convolutional neural networks (CNN), marked a major 

breakthrough, allowing for end-to-end feature learning and improved detection performance. 

The progression from R-CNN to Faster R-CNN and single-stage detectors like YOLO, SSD, and 

RetinaNet has significantly improved detection accuracy and speed. Despite these advancements, 
challenges such as small object detection, class imbalance, and real-time performance still present 

significant hurdles. Current and future research directions aim to address these challenges, exploring 
novel architectures, loss functions, and multimodal approaches to push the boundaries of what object 

detection models can achieve. 

In conclusion, while object detection has made remarkable strides, the field is far from reaching its 
full potential. Continuous advancements in deep learning, as well as the integration of new techniques 

such as 3D detection and cross-domain learning, will shape the future of object detection systems, 

enabling more robust, efficient, and versatile solutions for real-world applications. 
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