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ABSTRACT

Object detection is an important task in computer vision, aimed at detecting and recognizing the
position and category of target objects from images or videos. With the rise of deep learning, the
accuracy and efficiency of object detection have significantly improved, especially the application of
convolutional neural networks (CNN) in this field, which has made significant breakthroughs in object
detection methods. This article provides an overview of the development history of object detection,
with a focus on classic object detection algorithms, deep learning methods, and their evolution. It
explores the evaluation criteria and challenges faced by object detection, and looks forwardto future
development trends.
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1. INTRODUCTION

Object detection is one of the core problems in computer vision, which aims to find all interested
target objects from an image and determine their categories and positions (through bounding boxes).
Unlike image classification tasks, object detection not only requires classifying objects in the image,
but also accurately marking the spatial position of objects, making it a complex and challenging task
in computer vision.

In recent years, with the development of deep learning, especially convolutional neural networks
(CNN) [1-5], object detectiontechnology has made significant progress. Deep learning methods have
made significant breakthroughs, especially in problems such as multi-scale, complex backgrounds,
occlusion, and real-time detection. However, despite significant progress, object detection still faces
many challenges, such as detecting small objects, recognizing multiple types of targets, and class
imbalance.

This review will explore in detail the background, development history, main algorithms, evaluation
criteria, challenges faced, and future research directions of object detection, aiming to provide
valuable references for scholars and engineers engaged in related research.
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2. THE DEVELOPMENT HISTORY OF OBJECT DETECTION
2.1. Traditional Method

Before deep learning, object detection mainly relied on manual features and traditional machine

learning methods. The core idea of these methods is to describe the objects in the image by designing
some feature extraction algorithms, and to perform object recognition through classifiers such as

support vector machines, decision trees, etc.
2.1.1. Haar features and AdaBoost

In the late 1990s, the combination of Haar features [6-7] and AdaBoost [8-9] algorithm became a
classic object detection method, particularly achieving great success in face detection. The Haar
feature calculates the brightness difference of an image through rectangular regions, which has the
characteristics of simple calculation and fast speed. AdaBoost is used to select the optimal features
from a large number of weak classifiers and perform weighted combinations. However, the main
issue with this method is its poor robustness when the background is complex.

2.1.2. HOG features and SVM

In 2005, Dalal and Triggs proposed the HOG feature [10-11] and combined it with support vector
machine [12-13] for pedestrian detection. HOG features can effectively capture the shape and contour
of objects by calculating the local gradient direction information of the image. The advantage of this
method lies in its good robustness, especially for pedestrian detection, which has a wide range of

applications.
2.1.3. Sliding Window and Feature Pyramid

In traditional methods, sliding a window [14-15] is a common technique that detects targets in an
image by sliding a fixed size window at different scales. In order to improve detection accuracy and
speed, the feature pyramid [16] method is commonly used, which processes targets of different sizes
through multi-scale feature representation. However, sliding windows have high computational
overhead and poor detection performance for complex backgrounds and high-density targets.

2.2. The Rise of Deep Learning

The successful application of deep learning, especially convolutional neural networks (CNN), in
image classification tasks has provided strong impetus for the advancement of object detection. CNN
can automatically learn complex features from raw pixels to high-level semantics, greatly reducing
the workload of manual feature extraction.

2.2.1. R-CNN

In 2014, R-CNN (Region based CNN) [17-18] was proposed, marking a breakthrough in the
application of deep learning in object detection. R-CNN first uses selective search to generate
candidate regions, then uses CNN to extract features from each candidate region, and finally uses
SVM for classification. Although R-CNN has high detection accuracy, its computational efficiency

is low because each candidate region requires separate forward propagation.
2.2.2. Fast R-CNN

In order to solve the problem of low computational efficiency in R-CNN, Girshick proposed Fast R-
CNN [19-20] in 2015. Fast R-CNN extracts features by performing a convolution operation on the
entire image, and uses Rol Pooling to pool each candidate region, thus avoiding the inefficient
problem of repeated calculations in R-CNN. Fast R-CNN has made significant improvements in both
accuracy and speed.
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2.2.3. Faster R-CNN

In 2015, Faster R-CNN [21-22] further improved the efficiency of object detection by introducing
Region Proposal Networks (RPNs). RPN achieves end-to-end training by sliding windows on
convolutional feature maps to generate candidate regions. The biggest advantage of Faster R-CNN is
that it simultaneously performs object detectionand region proposal by sharing convolutional features,

greatly improving detection speed.
2.3. Single Stage Detection Method

Although two-stage methods based on region proposals, such as R-CNN and Faster R-CNN, have
shown outstanding accuracy, their computational complexity is relatively high. Therefore,
researchers have proposed single-stage object detection methods. These methods avoid the region
proposal stage and improve detection speed by directly predicting the target category and position on
the entire image.

2.3.1. YOLO

YOLO [23-24] was proposed by Redmon et al. in 2016, using a single convolutional neural network
for object detection. YOLO treats object detection tasks as regression problems, where the network
outputs boththe object category and bounding box coordinates during a forward propagation process.
The advantage of YOLO is its extremely fast detection speed, making it suitable for real-time
detectiontasks. Although YOLO has high accuracy, it has certain limitations in small object detection.

2.3.2. SSD

SSD [25-26] proposes a multi-scale convolutional feature map that can simultaneously perform object
detection on feature maps of different scales. SSD performs well in processing multi-scale targets by
introducing multiple detectors. Similar to YOLO, SSD is also a single-stage detection method, but it
has improved accuracy.

2.3.3. RetinaNet

RetinaNet [27-28] solves the problem of class imbalance by introducing focal loss. Focus loss can
suppress the influence of background categories and improve the model's detection ability for rare
targets. RetinaNet performs well in single-stage detection methods, especially when dealing with
target categories with long tail distributions.

3. EVALUATION CRITERIA AND CHALLENGES FOR OBJECT
DETECTION

3.1. Evaluation Criteria

The evaluation of object detection typically relies on the following criteria:
(1) Average precision (mAP)

Mean Average Precision (mAP) is the most commonly used evaluation metric in object detection.
MAP calculates the average precision (AP) for each category, and then averages the AP for all
categories. The calculation method of AP is based on different Intersection over Union (loU)
thresholds.

(2) Precision and Recall

Accuracy and recall are commonly used performance evaluation metrics, representing the proportion
of correct targets in the detection results and the proportion of actual targets detected, respectively.

The comprehensive performance of accuracy and recall is usually evaluated by F1 score.
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3.2. Challenge

The main challenges faced by object detection include:

(1) Small object detection: Small objects have weaker features and are easily interfered by
background, resulting in lower detection accuracy. The existing multi-scale detection methods have
made some improvements in small object detection, but still find it difficult to completely solve this
problem.

(2) Multi category and long tail problems: The distribution of categories in object detection is often
uneven, with fewer samples in certain categories, resulting in lower detection accuracy of the model
on these categories.

(3) Real time detection: In some applications that require high real-time performance, such as
autonomous driving and monitoring, object detection models not only need to maintain high accuracy,
but also need to have high processing speed

4. RESEARCH PROSPECTS

The field of object detection is continually evolving, with significant advancements driven by deep
learning and neural network architectures. However, several key areas remain for further
improvement and innovation.

(1) Improving Small Object Detection: Despite recent progress, detecting small objects continues to
be a major challenge. Future research should focus on developing more effective multi-scale
architectures, utilizing attention mechanisms or advanced feature fusion strategies to enhance the
representation of small objects. Moreover, integrating temporal information in video-based object
detection could further aid in identifying small moving objects.

(2) Handling Class Imbalance: As object detection often faces imbalanced datasets with many more
background samples than foreground objects, addressing class imbalance remains critical. New loss
functions, like focal loss (used in RetinaNet), and techniques such as hard negative mining could be
further refined and applied to improve the model’s performance in detecting underrepresented
categories.

(3) Real-Time Detection: Achieving high accuracy while maintaining real-time processing is crucial,
especially for applications in autonomous vehicles, security, and robotics. To address this, future
research should explore novel network architectures optimized for speed without sacrificing detection
precision. This may involve developing lightweight models, pruning techniques, or hardware
acceleration methods tailored for mobile and embedded systems.

(4) 3D Object Detection and Scene Understanding: Expanding object detection from 2D images to
3D space is an emerging research frontier. By incorporating depth information from LiDAR or stereo
cameras, researchers can improve the robustness of detection in environments with complex
geometries, such as urban and indoor scenes. Future methods should focus on end-to-end learning

systems that combine image and point cloud data for improved scene understanding.

(5) Cross-Domain and Unsupervised Learning: The effectiveness of object detection models often
diminishes when trained on one dataset and applied to another (cross-domain problems). To mitigate
this, unsupervised or semi-supervised learning techniques should be explored to reduce the
dependency on large labeled datasets, especially in domains where annotation is expensive or
impractical.

(6) Multimodal and Multitask Learning: Future research should focus on combining object detection
with other tasks such as semantic segmentation, tracking, and scene recognition in a unified
framework. Multimodal approaches that integrate data from various sensors (e.g., visual, auditory,
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and tactile) could lead to more comprehensive models capable of making robust predictions in diverse
environments.

5. SUMMARY

Object detection remains one of the most challenging and dynamic areas of computer vision, with a
variety of applications across industries such as autonomous driving, surveillance, healthcare, and
robotics. This review has provided an overview of the evolution of object detection, from traditional
feature-based methods to the more recent deep learning-driven approaches.

Traditional methods, such as Haar features combined with AdaBoost, and HOG features with SVM,
paved the way for early successes in face and pedestrian detection. However, these techniques were
limited in handling complex scenarios, such as varied object scales and challenging backgrounds.
The introduction of deep learning, particularly convolutional neural networks (CNN), marked a major
breakthrough, allowing for end-to-end feature learning and improved detection performance.

The progression from R-CNN to Faster R-CNN and single-stage detectors like YOLO, SSD, and
RetinaNet has significantly improved detection accuracy and speed. Despite these advancements,
challenges such as small object detection, class imbalance, and real-time performance still present
significant hurdles. Current and future research directions aim to address these challenges, exploring
novel architectures, loss functions, and multimodal approaches to push the boundaries of what object
detection models can achieve.

In conclusion, while object detection has made remarkable strides, the field is far from reaching its
full potential. Continuous advancements in deep learning, as well as the integration of new techniques
such as 3D detection and cross-domain learning, will shape the future of object detection systems,
enabling more robust, efficient, and versatile solutions for real-world applications.
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