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ABSTRACT

Stock price prediction faces substantial challenges due to nonlinearity, non-stationarity, and noise
contamination. Traditional econometric models and early Deep Learning methods struggle to
effectively capture complex temporal patterns. This paper proposes a novel hybrid Neural Network,
BILSTM-SDTCN-AutoCorr, which refines a BILSTM-Transformer backbone: a sequence
decomposition module partitions the input series into trend and seasonal components to filter noise
and enhance pattern separation; the vanilla self-attention mechanism is replaced by autocorrelation
attention to efficiently capture periodic dependencies via the Fast Fourier transform; and the
Transformer decoder is modified into Temporal Convolutional Network layers to strengthen local
sequence modeling. The model is evaluated on five stock index datasets, and the results
demonstrate significant superiority across evaluation metrics. The proposed model offersan efficient
and robust solution for stock prediction with potential practical applicability.
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1. INTRODUCTION

As a core component of the modern financial system, the stock market’s price fluctuations not only
provide a composite reflection of macroeconomic conditions, market supply—demand dynamics, and
investor sentiment, but also directly affect the optimization of capital allocation efficiency and the
investment returns of market participants [1]. Therefore, accurate stock price prediction has long been
a shared focus of research in both academia and the financial industry [2, 3]. However, stock price
time series are not simple linear time series data; rather, they exhibit pronounced nonlinearity and
non-stationarity, and factors such as policy shocks and market turbulence introduce strong noise

interference, rendering the forecasting process highly challenging [4, 5].

Early traditional econometric models, such as ARIMA and GARCH, although demonstrating certain
advantages in short-term forecasting, often struggle to capture the non-periodic featuresand complex
nonlinear relationships in stock data[6]. Moreover, they fail to adequately reflect the true distribution
of stock data, resulting in insufficient performance in long-term prediction and volatility modeling.

In recent years, the rise of deep learning methods has provided a new paradigm for time series
forecasting, enabling the automatic learning of complex nonlinear models from raw data without the
need for extensive feature engineering [7]. Classic models such as CNN, RNN, LSTM, and BiLSTM
excel in capturing sequence dependencies [8-10]. In 2020, Liu and Long et al. used a hybrid EWT-
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dpLSTM-PSO-ORELM framework to predict the stock closing prices of S&P500, CMSB, and DJIA,
demonstrating that this framework exhibits excellent predictionaccuracy, significantly outperforming
baseline models such as BP and single LSTM [11]. Similarly, in 2023, GUmez et al. proposed a deep
LSTM model optimized by the Artificial Rabbits Optimization algorithm for predicting DJIA index
stock prices. The experimental results showed that this model significantly outperforms baseline
models such as ANN and LSTM-GA in evaluation metrics including MSE, MAE, MAPE, and R=2
[12]. Due to their stronger feature extraction and nonlinear modeling capabilities, deep learning
models can mine potential patterns from vast and complex historical data, effectively capturing price
change trends and significantly improving prediction accuracy, making them one of the important
research directions in stock price prediction [13].

Nowadays, the attention mechanism has become the mainstream approach for addressing time series
forecasting in financial markets. Inspired by advancements in NLP and Computer Vision, scholars
have begun exploring the potential of the Transformer architecture in time series modeling [14, 15].
In 2022, Zhang et al. introduced TEANet, an attention network based on the Transformer encoder,
which addresses financial time series dependency issues using small-sample data over a 5-day
window. By fusing textual data from the X platform with stock price data, the model achieved
superior accuracy in stock movement prediction across four datasets compared to baseline models
such as ARIMA and CapTE. Furthermore, trading simulations demonstrated itsability to significantly
enhance returns, indicating practical application value [16]. Yang et al. (2025) proposed an Adaptive
Sharpe Ratio Optimized Time Fusion Transformer (TFT-ASRO) model, which integrates multi-
sensor real-time market dataand financial indicators to enable multi-task learning for stock Sharpe
ratio prediction. The model improved accuracy by 18% over existing deep learning baselines across
different time spans, performing particularly well in volatile markets [17].

We can observe that scholars have proposed numerous Transformer-based models for stock
prediction. However, the Transformer attention mechanism in traditional models primarily relies on
dot-product attention, with a computational complexity of O(L?), which exhibits low efficiency in
capturing the periodicity and long-term dependencies of time-series data [18, 19]. This is particularly
evident in financial time series, where the data often contain seasonal and trend noise, making it
difficult to disentangle the entangled patterns of trends and fluctuations in stock time series, thereby
leading to insufficient prediction stability [20]. Additionally, when adapting the traditional
Transformer decoder for financial time-series prediction, structural redundancy exists, and it fails to
fully integrate the sequence dependency enhancement capabilities of TCN, resulting in challenges in
balancing long-period prediction accuracy and efficiency.

Hence, to mitigate the shortcomings of current stock price forecasting frameworks in handling long-
sequence dependencies, complex time-series pattern decomposition, and information utilization
efficiency, This study utilizes BiLSTM-Transformer as the core framework and implements specific
enhancements, introducing an innovative enhanced hybrid neural network model—BIiLSTM-
SDTCN-AutoCorr—to boost the precision and resilience of stock price forecasting.

To encapsulate, the primary contributions of this study include the following:

Innovative architecture optimization: By incorporating an auto-correlation attention and a sequence
decomposition module, which are respectively used to model long-term periodic dependencies and
to separate trend and seasonal features, thereby adapting to the non-linear and non-stationary
characteristics of stock time series.

Integration of advantages from multiple models: The proposed model ingeniously combines the
sequence memory capabilities of BiLSTM, the auto-correlation attention of Transformer, and the
local convolutional modeling advantages of Temporal Convolutional Network (TCN), forming an
efficient hybrid architecture.
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Empirical validation and performance improvement: On five Chinese stock index datasets (including
the Shanghai Composite Index, CSI 300, etc.), comparative experiments with baseline models
(BILSTM, Transformer, BILSTM+CNN, and BiLSTM+Transformer) demonstrate the proposed

model's significant superiority in metrics such as MSE, MAE, RMSE, and R=

The structure of the paper is organized as follows: Section 2 reviews related algorithms; Section 3
details the proposed model architecture and related methods such as data preprocessing; Section 4
introduces the experimental setup and datasets; Section 5 presents the results analysis and discussion;
Section 6 concludes the paper.

2. RELATED WORK
2.1. Series Decomposition Module and Auto-Correlation Attention Mechanism

The Autoformer model, proposed by Wu et al. in 2021, provides key insights for addressing the core
challenges in long-term time series forecasting [20]. This model breaks through the architectural
design of the traditional Transformer by innovatively introducing the Series Decomposition Block,
which dynamically decomposes the time series data X into a trend component X, (reflecting
long—term stable changes) and a seasonal component X; (reflecting short—term periodic
fluctuations). The decomposition process is implemented using a Moving Average filter, as shown in
Equation (1).

X, = AvgPool (Padding (X)) @
X, =X—X,

This decomposition enables the model to separately process the long-term trends and short-term
patterns in the sequence, particularly in non-stationary financial data, which can mitigate noise
interference and enhance prediction stability, avoiding the shortcomings of pre-decomposition
methods that overlook interactions among future components.

Autoformer further introduces the auto-correlation mechanism as an alternative to traditional self-
attention. This mechanism is based on the autocorrelation function of the sequence, computing
correlations between similar subsequences rather than dot-product similarity, with the specific
calculation as shown in Equation (2).

. 1
Ryx (1) =1lim, ZZIE=1 XX )

Where, Ryxx(7) reflects the similarity between X, and its lagged sequence X,_, by T periods.
Specifically, the autocorrelation attention mechanism employs FFT to efficiently compute
correlations, and selects the most relevant key—value pairs through Time Delay Aggregation and
Stochastic Selection, with the specific computation as shown in Equation (3).

Ty, T = argTopk(RQ,K(T))
RQ,K(Tl)’ ey ﬁQ,K(Tk) = SOftMaX (RQ'K(Tl),"' ’RQ,K(Tk)) (3)
Auto — Correlation(Q,K,V) = Y ; Roll(V, )R« (1;)
Where argTopk is to get the arguments of the Topk autocorrelations and let k = |c¢ X logL|, c is a

hyper-parameter. R, x is autocorrelation between series Q and K. Roll (X,7) represents the
operation to X with time delay 7, during which elements that are shifted beyond the first position are

66



re-introduced at the last position. This design reduces the computational complexity to O0(nl ogn),
and naturally captures the periodic dependencies in the sequence.

3. METHODOLOGY

In this section, we first introduce the data preprocessing methods and elaborate on the improvement
strategies for the BiLSTM-Transformer structure. Subsequently, we describe the overall architecture
of the proposed neural network. The detailed description of the specific datasets will be presented in
the experimental section.

3.1. Data Preprocessing

Within the domain of financial time series examination, proficient data preparation plays a vital role
in developing dependable and precise forecasting models. This subsection outlines a series of
preprocessing steps applied to the stock datasets. These steps primarily include data normalization,

feature engineering (adding new feature indicators), and preparing the datasets for time series
modeling.

3.1.1. Data Normalization

Due to the substantial differences in the scales of features in the raw stock datasets, we apply Z-score
standardization to the stock datato ensure that all features contribute equally to the learning process
and to enhance model convergence. The specific calculation is shown in Equation (4).

Xi -X

Yi="— (4)
Where y; is the standardized value, x; is the input data, X is the mean of the input data, and s is the
standard deviation of the input data.

3.1.2. Feature Engineering

To enhance the model's predictive performance, additional technical indicators are generated based
on stock price data: the difference between the current day's closing price and the previous day's
closing price is used as the "price change amount,” reflecting absolute price changes; the percentage
change relative tothe previous day's closing price is used as the "price change rate," reflecting relative
price changes; meanwhile, moving averages are calculated to capture short-term trends in the stock
price series. Stock prices are averaged over different moving windows, with the specific calculation
formula shown in Equation (5).

MAY = =Wl x, (5)
Where MAY represents the moving average at time step t, and w is the window size. In our
experiments, we computed the 5-day and 10-day window moving averages to capture short-term
trends in the stock price sequences.

3.1.3. Data Preparation

In preparing data for time series forecasting, we reshape the raw dataset into overlapping sequences
of fixed length. Specifically, given a sequence length L, the input sequence at time ¢ includes stock
prices and engineered features from t —L to t — 1, while the target output is the stock price at time
t. Formally, the input sequence X, and the corresponding target y, can be defined as:

Xt ={(Pe_p fr-1)rr Peo1s fro )yt = DU (6)
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Where p denotes the stock price, and f represents the engineered features. Multiple input-output
pairs are generated from historical stock price data using the sliding window method. In this
experiment, we set the sequence length L = 20, meaning that the input consists of the stock prices
from the past 20 days to predict the stock price on the 21st day.

3.2. The BILSTM-SDTCN-AutoCorr Method in This Paper
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Figure 1. The Structure of BiLSTM-SDTCN-AutoCorr

This study proposes a hybrid neural network architecture for stock price prediction, which integrates
Bidirectional Long Short-Term Memory (BILSTM), an improved traditional Transformer structure,
and introduces a sequence decomposition strategy to implement a dual-path encoder-decoder design,
ultimately incorporating an autocorrelation attention mechanism to achieve fine-grained modeling of
time series data. The specific structure is illustrated in Figure 1.

3.2.1. InputLayer and Positional Encoding

The input data is first injected with temporal order information through sine-cosine positional
encoding. This positional encoding module is placed before the BILSTM layers to enhance the
model's perception of sequence dependencies and avoid interference in later encoding stages.

3.2.2. BiLSTM Feature Extraction

The positionally encoded data is fed into a 3-layer bidirectional LSTM for preliminary temporal
feature extraction. Each layer contains 64 hidden units, producing 128-dimensional features after
bidirectional processing, with residual connections, layer normalization, and Dropout regularization

employed to stabilize training and prevent overfitting.
3.2.3. Sequence Decomposition Module

Following the BILSTM output, a sequence decomposition module is introduced to decompose the
feature sequence into trend and seasonal components. This decomposition not only reduces the
complexity of the sequence but also allows the model to perform independent modeling at different

time scales, thereby improving the robustness of predictions.
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3.2.4. Adjustments to the encoder and decoder

Removal of the input embedding module: The input embedding module in traditional Transformers
is primarily used for text vectorization (e.g., word embeddings). However, in stock price prediction,
the input consists of numerical time series, which do not require text vectorization. Therefore, we
removed this module and directly fed the raw features into the positional encoding layer. This
modification simplifies the architecture, reduces the number of parameters, and avoids unnecessary
conversion noise, thereby enhancing the model's sensitivity to numerical data.

Modification of the Transformer model's decoder: The decoder in traditional Transformers relies on
multi-layer attention mechanisms and masked inputs, making it suitable for generative tasks (e.g.,
sequence-to-sequence translation). However, stock prediction does not require generative decoding.
Thus, we replaced the decoder with Temporal Convolutional Network (TCN) layers, fully connected
layers, and a Tanh activation function. This replacement enables the decoding process to emphasize
the capture of temporal causal relationships, while the Tanh function maps the output to the [-1, 1]
range, accommodating the normalization needs of price fluctuations.

Integration of the Auto-Correlation Mechanism: Traditional multi-head attention is based on dot-
product similarity computation, whereas Auto-Correlation relies on the FFT to efficiently compute
sequence correlations, and discovers periodic dependencies (such as seasonal fluctuations in the stock
market) through Time Delay Aggregation, as well as aggregates the most important delay patterns
using a Stochastic Selection strategy.

Enhanced Residual Connection Architecture: To address the gradient vanishing problem in deep
Transformers, multi-level residual connections are introduced. Each encoder layer incorporates three
sub-layers: the Auto-Correlation layer, the feedforward network layer, and the deep residual
connection layer, along with a global residual connection to improve gradient flow in deep networks.

3.2.5. Temporal Convolutional Network Decoder

The causal convolution in the TCN layer ensures that the model relies only on past data when
predicting the current time step, avoiding leakage of future information [21]. The specific

computation is shown in Equation (7).

F(S) = Zlicz_ol f(i)xs—di (7)

Meanwhile, the dilated convolutions in TCN can introduce a dilation factor into the convolution
kernel to expand the receptive field, thereby efficiently capturing long-range dependencies without
the need to stack excessive layers. Mathematically, the output of the dilated convolution is shown in
Equation (8).

Ve = Ilg;g Wi Xt_q-k (8)

Where, y; is the output at time step t, w,, is the convolutional weight, d is the dilation factor, and
K is the kernel size. As the number of layers increases, the dilation factor typically grows

exponentially, causing the receptive field to expand exponentially. This enables Temporal
Convolutional Network to capture long-term dependencies without increasing the network depth.

4. EXPERIMENTAL SETUP

This section commences withan outline of the experimental configuration, encompassing the datasets
employed, metrics for performance assessment, and key model parameters.
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4.1. Dataset Description

To ensure the scalability of the model, this paper employs five datasets for experiments. The selected
index stock datasets are shown in Table 1.

Table 1. The selected index stock datasets

NUMBER Index Name Index Code
1 Shanghai Composite Index 000001.XSHG
2 Shenzhen Component Index 399001.XSHE
3 CSI 300 000300.XSHG
4 CSI 800 000906.XSHG
5 ChiNext Index 399006.XSHE

The index stock data is sourced from AKshare, an open-source financial data interface library in
Python. The data for the five index stocks used in the experiments covers the time period from
February 1, 2012, to February 28, 2025. We utilize historical trading data as the dataset, including
closing price, highest price, lowest price, opening price, change amount, change percentage, trading
volume, trading amount, as well as two related technical indicators (5-day moving average and 10-
day moving average). Each stock’s data consists of 3178 samples.

4.2. Performance Evaluation

In this study, we employ four statistical evaluation metrics to compare the performance of the relevant
models, namely MSE, MAE, RMSE, and RZ.

5. NETWORK PARAMETERS

Table 2. The parameter settings for the BILSTM-SDTCN-AutoCorr method

Parameter Value
Input features 10
Hidden size of BILSTM 64
Number of BiLSTM layers 3
Number of transformer encoder heads 8
Number of transformer encoder layers 6
Transformer feed-forward dim 512
TCN kernel size 7
Decomposition kernel size 25
Auto-correlation factor 1
Dropout 0.2
Epochs 400
Batch size 36
Learning rate 0.0001
Optimizer adam
Loss function mse
Window size 20

The parameter settings for the BILSTM-SDTCN-AutoCorr method in this experiment are shown in
Table 2. The number of input features is 10, the number of units in the BILSTM layers is 64, with a
total of 3 layers, the loss function is MSE, the optimizer is Adam, and the learning rate is 0.0001. The

70



window size is 20, meaning the closing price of the stock for the next day is predicted based on the
stock data from the previous 20 days, and the batch size is 36.

6. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present comprehensive experiments and analyses conducted to evaluate the
performance of the proposed BILSTM-SDTCN-AutoCorr method framework. To investigate the
predictive performance of this model, we selected four benchmark models for comparison, including
BILSTM, Transformer, BILSTM+CNN, and BiLSTM+Transformer. We conducted comparative
experiments between BILSTM-SDTCN-AutoCorr and these models on four different index stock

datasets to verify its superiority in the stock price prediction task.

6.1. Overall Performance Comparison

Table 3. Prediction Metrics of Five Methods on Shanghai Composite Index

Model MSE MAE RMSE R=

BILSTM 0.0037 0.0427 0.0609 0.941
BILSTM+CNN 0.0106 0.0732 0.1038 0.873
Transformer 0.0068 0.0667 0.0826 0.918
BiLSTM+Transformer 0.0054 0.0596 0.0732 0.931
BIiLSTM-SDTCN-AutoCorr 0.0021 0.0312 0.0458 0.964

Table 4. Prediction Metrics of Five Methods for Four Other Stock Indices

Stock Model MSE MAE RMSE R=
000300.XSHG BILSTM-SDTCN-AutoCorr | 0.00116  0.0267 = 0.0340 0.968
000300.XSHG BiLSTM 0.00342 0.0398 @ 0.0585 0.941
000300.XSHG BILSTM+CNN 0.00679 0.0612  0.0824 0.913
000300.XSHG Transformer 0.00623 = 0.0634 @ 0.0790 0.925
000300.XSHG BILSTM+Transformer 0.00499 0.0567 @ 0.0706 0.939
000906.XSHG BiILSTM-SDTCN-AutoCorr | 0.00109 = 0.0254 = 0.0330 0.971
000906.XSHG BILSTM 0.00320 0.0376 = 0.0565 0.963
000906.XSHG BILSTM+CNN 0.00623 = 0.0587 = 0.0790 0.928
000906.XSHG Transformer 0.00579 0.0601 = 0.0761 0.931
000906.XSHG BiLSTM+Transformer 0.00457  0.0543 @ 0.0676 0.944
399006.XSHE BiILSTM-SDTCN-AutoCorr ~ 0.00142  0.0312  0.0377 0.958
399006.XSHE BiLSTM 0.00416  0.0456 = 0.0645 0.946
399006.XSHE BILSTM+CNN 0.00786 = 0.0689  0.0886 0.907
399006.XSHE Transformer 0.00723 0.0712 @ 0.0851 0.912
399006.XSHE BILSTM+Transformer 0.00579  0.0623  0.0761 0.928
399001.XSHE BiLSTM-SDTCN-AutoCorr | 0.00133 = 0.0298 = 0.0365 0.962
399001.XSHE BILSTM 0.00368 0.0412  0.0606 0.958
399001.XSHE BILSTM+CNN 0.00723  0.0654 @ 0.0851 0.916
399001.XSHE Transformer 0.00679 0.0678 @ 0.0824 0.919
399001.XSHE BiLSTM+Transformer 0.00523 = 0.0589 = 0.0723 0.939

All models performed predictions based on the data of five index stocks as shown in Table 1. For
each stock, five independent tests were executed, and the average of the five results was calculated
as the final prediction output. Prior to training, all datawere standardized using Equation (5). Table
3 presents the prediction evaluation metrics of the five methods on the Shanghai Composite Index
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(stock code: 000001.XSHG) dataset; Table 4 shows the performance of the aforementioned five
methods on the other four index stocks.

The experimental results demonstrate that the proposed BIiLSTM-SDTCN-AutoCorr model
significantly outperforms all baseline models on the test set. The predictive capabilities of the
aforementioned five methods, ranked in descending order, are as follows: BIiLSTM-SDTCN-
AutoCorr, BILSTM, BiLSTM+Transformer, Transformer, and BILSTM+CNN.

As shown in Table 3, BILSTM-SDTCN-AutoCorr achieves the best values across key metrics
including MSE, MAE, RMSE, and R=2Specifically, compared to the best-performing baseline model
BIiLSTM, BILSTM-SDTCN-AutoCorr reduces MSE by 43.2% (from 0.0037 to 0.0021), MAE by
26.9% (from 0.0427 to 0.0312), and RMSE by 24.8% (from 0.0609 to 0.0458), while increasing R=
by 2.3% (from 0.942 to 0.964). These improvements not only reflect enhanced prediction accuracy
but also highlight the model's stronger explanatory power for data variability. This overall
performance advantage stems from the innovative architectural design of BILSTM-SDTCN-
AutoCorr, which more effectively captures the complex dynamic patterns in time series, thereby
achieving higher accuracy and robustness in stock price prediction tasks. Figure 2 and Figure 3 more
intuitively illustrate the significant advantages of the BILSTM-SDTCN-AutoCorr model in terms of
fitting quality and prediction precision, particularly achieving a qualitative improvement in error
control. The BILSTM-SDTCN-AutoCorr model excels in capturing the overall upward and
downward trends of the Shanghai Composite Index, with the predicted curve closely aligning with
the actual value curve, demonstrating the model's effective modeling of long-term dependencies. In
the time step interval of 0-50, the model accurately predicts the downward trend of stock prices from
3100 points to 2900 points; in the time step interval of 500-550, it captures the rapid upward trend
from 2700 points to 3400 points; and in the time step interval of 125-240, it precisely reproduces the
oscillatory consolidation in the 3100-3400 point range. This trend-capturing capability benefits from
the model's effective handling of long-term dependencies.
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Figure 2. Comparison of Performance Improvement for Prediction Models
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6.2. Ablation Experiments

To quantify the role of each component in model performance, we conducted ablation experiments
on the CSI 300 (stock code: 000300.XSHG) dataset, with results detailed in Table 5. The complete
BILSTM-SDTCN-AutoCorr model achieved MSE, MAE, and R=values of 0.00113, 0.0340, and
0.969, respectively. Removing the Series Decomposition component increased MSE to 0.00168 and
decreased R=200.952, resulting in an overall performance degradation of approximately 1.3%, which
confirms the core contribution of this component in enhancing prediction accuracy. Replacing Auto-
Correlation with a traditional attention mechanism led to a further performance degradation of 1.67%,
thereby highlighting its unique advantage in capturing periodic dependencies in time series.
Removing TCN as the decoding layer reduced R=to 0.935 (a performance decline of 3.03%),
verifying the effectiveness of improving the Transformer decoder to a TCN layer. These results
indicate that the TCN decoding layer contributes the most, followed by the auto-correlation
mechanism and the series decomposition design, which collectively form the foundation of the
model's performance.

Table 5. Performance Metrics of BIiLSTM-SDTCN-AutoCorr Model Variants

Model Variant R= MAE MSE RMSE @ Performance Drop (%)
Completed BiLSTM- 0.969 0.0340  0.00113 = 0.0263 0.0
SDTCN-AutoCorr
Without Series 0.952 0.0356 = 0.00168 @ 0.041 1.3
Decomposition
Without Auto-Correlation = 0.948 0.0389 0.00192 0.0438 1.67
Without TCN Decoder 0.935 0.0423 = 0.00216 @ 0.0464 3.03

7. CONCLUSION

In this study, we introduce an innovative mixed neural network architecture, BILSTM-SDTCN-
AutoCorr, which integrates BiLSTM for sequence feature extraction, a sequence decomposition
module for trend-seasonal separation, auto-correlation attention for modeling periodic dependencies,
and a TCN decoder for local convolution enhancement, thereby systematically optimizing the
traditional BILSTM-Transformer framework. The core innovations of this model lie in its dual-path
encoder-decoder architecture and the integration of the Auto-Correlation mechanism: the former
enables multi-scale feature separation and fusion, while the latter efficiently captures long-term
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periodic patterns using Fourier transforms, significantly reducing computational complexity and
enhancing prediction robustness.

Experimental results on five Chinese stock index datasets (including the Shanghai Composite Index
and CSI 300) demonstrate the model's superiority: compared to baseline models (such as BILSTM,
Transformer, BILSTM+CNN, and BiLSTM+Transformer), BiLSTM-SDTCN-AutoCorr achieves
average improvements of 20%-40% across MSE, MAE, RMSE, and R=2metrics. These results not
only highlight the model's advantages in capturing complex dynamics in stock markets (such as trend
fluctuations and short-term oscillations) but also provide a solid foundation for its applications in
real-world financial decision-making (such as risk assessment and investment strategy optimization).

Although the model exhibits remarkable generalization ability and prediction accuracy, its sensitivity
to external factors (such as sudden events or macroeconomic policies) remains to be explored. Future
research could extend to multimodal data fusion (such as integrating news sentiment analysis or
macroeconomic indicators) or incorporate federated learning to enhance cross-market prediction
performance under privacy protection.
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