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ABSTRACT  

Stock price prediction faces substantial challenges due to nonlinearity, non-stationarity, and noise 
contamination. Traditional econometric models and early Deep Learning methods struggle to 
effectively capture complex temporal patterns. This paper proposes a novel hybrid Neural Network, 
BiLSTM-SDTCN-AutoCorr, which refines a BiLSTM–Transformer backbone: a sequence 
decomposition module partitions the input series into trend and seasonal components to filter noise 
and enhance pattern separation; the vanilla self-attention mechanism is replaced by autocorrelation 
attention to efficiently capture periodic dependencies via the Fast Fourier transform; and the 
Transformer decoder is modified into Temporal Convolutional Network layers to strengthen local 
sequence modeling. The model is evaluated on five stock index datasets, and the results 
demonstrate significant superiority across evaluation metrics. The proposed model offers an efficient 
and robust solution for stock prediction with potential practical applicability. 
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1. INTRODUCTION 

As a core component of the modern financial system, the stock market’s price fluctuations not only 
provide a composite reflection of macroeconomic conditions, market supply–demand dynamics, and 

investor sentiment, but also directly affect the optimization of capital allocation efficiency and the 
investment returns of market participants [1]. Therefore, accurate stock price prediction has long been 

a shared focus of research in both academia and the financial industry [2, 3]. However, stock price 
time series are not simple linear time series data; rather, they exhibit pronounced nonlinearity and 
non-stationarity, and factors such as policy shocks and market turbulence introduce strong noise 

interference, rendering the forecasting process highly challenging [4, 5]. 

Early traditional econometric models, such as ARIMA and GARCH, although demonstrating certain 

advantages in short-term forecasting, often struggle to capture the non-periodic features and complex 
nonlinear relationships in stock data [6]. Moreover, they fail to adequately reflect the true distribution 

of stock data, resulting in insufficient performance in long-term prediction and volatility modeling. 

In recent years, the rise of deep learning methods has provided a new paradigm for time series 
forecasting, enabling the automatic learning of complex nonlinear models from raw data without the 

need for extensive feature engineering [7]. Classic models such as CNN, RNN, LSTM, and BiLSTM 
excel in capturing sequence dependencies [8-10]. In 2020, Liu and Long et al. used a hybrid EWT-
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dpLSTM-PSO-ORELM framework to predict the stock closing prices of S&P500, CMSB, and DJIA, 
demonstrating that this framework exhibits excellent prediction accuracy, significantly outperforming 
baseline models such as BP and single LSTM [11]. Similarly, in 2023, Gülmez et al. proposed a deep 

LSTM model optimized by the Artificial Rabbits Optimization algorithm for predicting DJIA index 
stock prices. The experimental results showed that this model significantly outperforms baseline 

models such as ANN and LSTM-GA in evaluation metrics including MSE, MAE, MAPE, and R² 
[12]. Due to their stronger feature extraction and nonlinear modeling capabilities, deep learning 
models can mine potential patterns from vast and complex historical data, effectively capturing price 

change trends and significantly improving prediction accuracy, making them one of the important 

research directions in stock price prediction [13]. 

Nowadays, the attention mechanism has become the mainstream approach for addressing time series 
forecasting in financial markets. Inspired by advancements in NLP and Computer Vision, scholars 
have begun exploring the potential of the Transformer architecture in time series modeling [14, 15]. 

In 2022, Zhang et al. introduced TEANet, an attention network based on the Transformer encoder, 
which addresses financial time series dependency issues using small-sample data over a 5-day 

window. By fusing textual data from the X platform with stock price data, the model achieved 
superior accuracy in stock movement prediction across four datasets compared to baseline models 
such as ARIMA and CapTE. Furthermore, trading simulations demonstrated its ability to significantly 

enhance returns, indicating practical application value [16]. Yang et al. (2025) proposed an Adaptive 
Sharpe Ratio Optimized Time Fusion Transformer (TFT-ASRO) model, which integrates multi-

sensor real-time market data and financial indicators to enable multi-task learning for stock Sharpe 
ratio prediction. The model improved accuracy by 18% over existing deep learning baselines across 

different time spans, performing particularly well in volatile markets [17]. 

We can observe that scholars have proposed numerous Transformer-based models for stock 
prediction. However, the Transformer attention mechanism in traditional models primarily relies on 

dot-product attention, with a computational complexity of O(L2), which exhibits low efficiency in 
capturing the periodicity and long-term dependencies of time-series data [18, 19]. This is particularly 

evident in financial time series, where the data often contain seasonal and trend noise, making it 
difficult to disentangle the entangled patterns of trends and fluctuations in stock time series, thereby 

leading to insufficient prediction stability [20]. Additionally, when adapting the traditional 
Transformer decoder for financial time-series prediction, structural redundancy exists, and it fails to 
fully integrate the sequence dependency enhancement capabilities of TCN, resulting in challenges in 

balancing long-period prediction accuracy and efficiency. 

Hence, to mitigate the shortcomings of current stock price forecasting frameworks in handling long-

sequence dependencies, complex time-series pattern decomposition, and information utilization 
efficiency, This study utilizes BiLSTM-Transformer as the core framework and implements specific 
enhancements, introducing an innovative enhanced hybrid neural network model—BiLSTM-

SDTCN-AutoCorr—to boost the precision and resilience of stock price forecasting. 

To encapsulate, the primary contributions of this study include the following: 

Innovative architecture optimization: By incorporating an auto-correlation attention and a sequence 
decomposition module, which are respectively used to model long-term periodic dependencies and 
to separate trend and seasonal features, thereby adapting to the non-linear and non-stationary 

characteristics of stock time series. 

Integration of advantages from multiple models: The proposed model ingeniously combines the 

sequence memory capabilities of BiLSTM, the auto-correlation attention of Transformer, and the 
local convolutional modeling advantages of Temporal Convolutional Network (TCN), forming an 

efficient hybrid architecture.  
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Empirical validation and performance improvement: On five Chinese stock index datasets (including 
the Shanghai Composite Index, CSI 300, etc.), comparative experiments with baseline models 
(BiLSTM, Transformer, BiLSTM+CNN, and BiLSTM+Transformer) demonstrate the proposed 

model's significant superiority in metrics such as MSE, MAE, RMSE, and R².  

The structure of the paper is organized as follows: Section 2 reviews related algorithms; Section 3 

details the proposed model architecture and related methods such as data preprocessing; Section 4 
introduces the experimental setup and datasets; Section 5 presents the results analysis and discussion; 

Section 6 concludes the paper. 

2. RELATED WORK 

2.1. Series Decomposition Module and Auto-Correlation Attention Mechanism 

The Autoformer model, proposed by Wu et al. in 2021, provides key insights for addressing the core 
challenges in long-term time series forecasting [20]. This model breaks through the architectural 
design of the traditional Transformer by innovatively introducing the Series Decomposition Block, 

which dynamically decomposes the time series data 𝑋  into a trend component 𝑋𝑡  (reflecting 

long−term stable changes) and a seasonal component 𝑋𝑠  (reflecting short−term periodic 
fluctuations). The decomposition process is implemented using a Moving Average filter, as shown in 

Equation (1). 

𝑋𝑡 = AvgPool(𝑃𝑎𝑑𝑑𝑖𝑛𝑔(𝑋))                             (1) 

𝑋𝑠 = 𝑋 − 𝑋𝑡 
 

This decomposition enables the model to separately process the long-term trends and short-term 

patterns in the sequence, particularly in non-stationary financial data, which can mitigate noise 
interference and enhance prediction stability, avoiding the shortcomings of pre-decomposition 

methods that overlook interactions among future components. 

Autoformer further introduces the auto-correlation mechanism as an alternative to traditional self-
attention. This mechanism is based on the autocorrelation function of the sequence, computing 

correlations between similar subsequences rather than dot-product similarity, with the specific 

calculation as shown in Equation (2). 

 

𝑅𝑋𝑋(𝜏) = l i m𝐿→∞ 
1

𝐿
∑  𝐿
𝑡=1 𝑋𝑡𝑋𝑡−𝜏                           (2) 

 

Where, 𝑅𝑋𝑋(𝜏) reflects the similarity between 𝑋𝑡  and its lagged sequence 𝑋𝑡−𝜏  by 𝜏  periods. 
Specifically, the autocorrelation attention mechanism employs FFT to efficiently compute 
correlations, and selects the most relevant key−value pairs through Time Delay Aggregation and 

Stochastic Selection, with the specific computation as shown in Equation (3). 

 

𝜏1, ⋯ , 𝜏𝑘 = argTopk(𝑅𝑄,𝐾(𝜏))

𝑅̂𝑄,𝐾(𝜏1),⋯ , 𝑅̂𝑄,𝐾(𝜏𝑘) = SoftMax (𝑅𝑄,𝐾(𝜏1),⋯ ,𝑅𝑄,𝐾(𝜏𝑘))

Auto − Correlation(𝑄, 𝐾, 𝑉) = ∑  𝑘
𝑖=1 Roll(𝑉, 𝜏𝑖)𝑅̂𝑄,𝐾(𝜏𝑖)

                (3) 

 

Where argTopk is to get the arguments of the Topk autocorrelations and let 𝑘 = ⌊𝑐 × log𝐿⌋, 𝑐 is a 

hyper-parameter. 𝑅𝑄,𝐾  is autocorrelation between series 𝑄  and 𝐾 . Roll (X, 𝜏)  represents the 

operation to X with time delay 𝜏, during which elements that are shifted beyond the first position are 
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re-introduced at the last position. This design reduces the computational complexity to 𝑂(𝑛l o g 𝑛), 
and naturally captures the periodic dependencies in the sequence. 

3. METHODOLOGY 

In this section, we first introduce the data preprocessing methods and elaborate on the improvement 

strategies for the BiLSTM-Transformer structure. Subsequently, we describe the overall architecture 
of the proposed neural network. The detailed description of the specific datasets will be presented in 

the experimental section. 

3.1. Data Preprocessing 

Within the domain of financial time series examination, proficient data preparation plays a vital role 

in developing dependable and precise forecasting models. This subsection outlines a series of 
preprocessing steps applied to the stock datasets. These steps primarily include data normalization, 

feature engineering (adding new feature indicators), and preparing the datasets for time series 
modeling. 

3.1.1. Data Normalization 

Due to the substantial differences in the scales of features in the raw stock datasets, we apply Z-score 
standardization to the stock data to ensure that all features contribute equally to the learning process 

and to enhance model convergence. The specific calculation is shown in Equation (4). 

 

𝑦𝑖 =
𝑥𝑖−𝑥̅

𝑠
                                    (4) 

 

Where 𝑦𝑖 is the standardized value, 𝑥𝑖 is the input data, 𝑥̅ is the mean of the input data, and s is the 

standard deviation of the input data. 

3.1.2. Feature Engineering 

To enhance the model's predictive performance, additional technical indicators are generated based 
on stock price data: the difference between the current day's closing price and the previous day's 

closing price is used as the "price change amount," reflecting absolute price changes; the percentage 
change relative to the previous day's closing price is used as the "price change rate," reflecting relative 
price changes; meanwhile, moving averages are calculated to capture short-term trends in the stock 

price series. Stock prices are averaged over different moving windows, with the specific calculation 

formula shown in Equation (5). 

MA𝑡
𝑤 =

1

𝑤
∑  𝑤−1
𝑖=0 𝑥𝑡−𝑖                               (5) 

 

Where MA𝑡
𝑤  represents the moving average at time step  𝑡 , and w  is the window size. In our 

experiments, we computed the 5-day and 10-day window moving averages to capture short-term 

trends in the stock price sequences. 

3.1.3. Data Preparation 

In preparing data for time series forecasting, we reshape the raw dataset into overlapping sequences 

of fixed length. Specifically, given a sequence length 𝐿, the input sequence at time 𝑡 includes stock 

prices and engineered features from 𝑡 − 𝐿  to 𝑡 − 1, while the target output is the stock price at time 
𝑡. Formally, the input sequence 𝑋𝑡 and the corresponding target 𝑦𝑡 can be defined as: 

 
𝑋𝑡 = {(𝑝𝑡−𝐿 , 𝑓𝑡−𝐿),… , (𝑝𝑡−1, 𝑓𝑡−1)}, 𝑦𝑡 = 𝑝𝑡                        (6) 
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Where 𝑝 denotes the stock price, and 𝑓 represents the engineered features. Multiple input-output 
pairs are generated from historical stock price data using the sliding window method. In this 

experiment, we set the sequence length L = 20, meaning that the input consists of the stock prices 

from the past 20 days to predict the stock price on the 21st day. 

3.2. The BiLSTM-SDTCN-AutoCorr Method in This Paper 

 

Figure 1. The Structure of BiLSTM-SDTCN-AutoCorr 

This study proposes a hybrid neural network architecture for stock price prediction, which integrates 

Bidirectional Long Short-Term Memory (BiLSTM), an improved traditional Transformer structure, 
and introduces a sequence decomposition strategy to implement a dual-path encoder-decoder design, 

ultimately incorporating an autocorrelation attention mechanism to achieve fine-grained modeling of 

time series data. The specific structure is illustrated in Figure 1. 

3.2.1. Input Layer and Positional Encoding 

The input data is first injected with temporal order information through sine-cosine positional 
encoding. This positional encoding module is placed before the BiLSTM layers to enhance the 

model's perception of sequence dependencies and avoid interference in later encoding stages. 

3.2.2. BiLSTM Feature Extraction 

The positionally encoded data is fed into a 3-layer bidirectional LSTM for preliminary temporal 

feature extraction. Each layer contains 64 hidden units, producing 128-dimensional features after 
bidirectional processing, with residual connections, layer normalization, and Dropout regularization 

employed to stabilize training and prevent overfitting. 

3.2.3. Sequence Decomposition Module 

Following the BiLSTM output, a sequence decomposition module is introduced to decompose the 

feature sequence into trend and seasonal components. This decomposition not only reduces the 
complexity of the sequence but also allows the model to perform independent modeling at different 

time scales, thereby improving the robustness of predictions. 
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3.2.4. Adjustments to the encoder and decoder 

Removal of the input embedding module: The input embedding module in traditional Transformers 
is primarily used for text vectorization (e.g., word embeddings). However, in stock price prediction, 

the input consists of numerical time series, which do not require text vectorization. Therefore, we 
removed this module and directly fed the raw features into the positional encoding layer. This 

modification simplifies the architecture, reduces the number of parameters, and avoids unnecessary 

conversion noise, thereby enhancing the model's sensitivity to numerical data. 

Modification of the Transformer model's decoder: The decoder in traditional Transformers relies on 

multi-layer attention mechanisms and masked inputs, making it suitable for generative tasks (e.g., 
sequence-to-sequence translation). However, stock prediction does not require generative decoding. 

Thus, we replaced the decoder with Temporal Convolutional Network (TCN) layers, fully connected 
layers, and a Tanh activation function. This replacement enables the decoding process to emphasize 
the capture of temporal causal relationships, while the Tanh function maps the output to the [-1, 1] 

range, accommodating the normalization needs of price fluctuations. 

Integration of the Auto-Correlation Mechanism: Traditional multi-head attention is based on dot-

product similarity computation, whereas Auto-Correlation relies on the FFT to efficiently compute 
sequence correlations, and discovers periodic dependencies (such as seasonal fluctuations in the stock 
market) through Time Delay Aggregation, as well as aggregates the most important delay patterns 

using a Stochastic Selection strategy.  

Enhanced Residual Connection Architecture: To address the gradient vanishing problem in deep 

Transformers, multi-level residual connections are introduced. Each encoder layer incorporates three 
sub-layers: the Auto-Correlation layer, the feedforward network layer, and the deep residual 

connection layer, along with a global residual connection to improve gradient flow in deep networks. 

3.2.5. Temporal Convolutional Network Decoder 

The causal convolution in the TCN layer ensures that the model relies only on past data when 
predicting the current time step, avoiding leakage of future information [21]. The specific 

computation is shown in Equation (7). 

𝐹(𝑠) = ∑  𝑘−1
𝑖=0 𝑓(𝑖)𝑥𝑠−𝑑𝑖                                (7) 

 
Meanwhile, the dilated convolutions in TCN can introduce a dilation factor into the convolution 
kernel to expand the receptive field, thereby efficiently capturing long-range dependencies without 

the need to stack excessive layers. Mathematically, the output of the dilated convolution is shown in 

Equation (8). 

𝑦𝑡 = ∑  𝐾−1
𝑘=0 𝑤𝑘 ⋅ 𝑥𝑡−𝑑⋅𝑘                               (8) 

 

Where, 𝑦𝑡 is the output at time step 𝑡, 𝑤𝑘 is the convolutional weight, 𝑑 is the dilation factor, and 
𝐾  is the kernel size. As the number of layers increases, the dilation factor typically grows 
exponentially, causing the receptive field to expand exponentially. This enables Temporal 

Convolutional Network to capture long-term dependencies without increasing the network depth. 

4. EXPERIMENTAL SETUP 

This section commences with an outline of the experimental configuration, encompassing the datasets 

employed, metrics for performance assessment, and key model parameters. 
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4.1. Dataset Description 

To ensure the scalability of the model, this paper employs five datasets for experiments. The selected 

index stock datasets are shown in Table 1. 

Table 1. The selected index stock datasets 

NUMBER Index Name Index Code 

1 Shanghai Composite Index 000001.XSHG 

2 Shenzhen Component Index 399001.XSHE 

3 CSI 300 000300.XSHG 

4 CSI 800 000906.XSHG 

5 ChiNext Index 399006.XSHE 

 

The index stock data is sourced from AKshare, an open-source financial data interface library in 
Python. The data for the five index stocks used in the experiments covers the time period from 
February 1, 2012, to February 28, 2025. We utilize historical trading data as the dataset, including 

closing price, highest price, lowest price, opening price, change amount, change percentage, trading 
volume, trading amount, as well as two related technical indicators (5-day moving average and 10-

day moving average). Each stock's data consists of 3178 samples. 

4.2. Performance Evaluation 

In this study, we employ four statistical evaluation metrics to compare the performance of the relevant  

models, namely MSE, MAE, RMSE, and R2.  

5. NETWORK PARAMETERS 

Table 2. The parameter settings for the BiLSTM-SDTCN-AutoCorr method 

Parameter Value 

Input features 10 

Hidden size of BiLSTM 64 

Number of BiLSTM layers 3 

Number of transformer encoder heads 8 

Number of transformer encoder layers 6 

Transformer feed-forward dim 512 

TCN kernel size 7 

Decomposition kernel size 25 

Auto-correlation factor 1 

Dropout  0.2 

Epochs 400 

Batch size 36 

Learning rate 0.0001 

Optimizer adam 

Loss function mse 

Window size 20 

 

The parameter settings for the BiLSTM-SDTCN-AutoCorr method in this experiment are shown in 
Table 2. The number of input features is 10, the number of units in the BiLSTM layers is 64, with a 

total of 3 layers, the loss function is MSE, the optimizer is Adam, and the learning rate is 0.0001. The 
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window size is 20, meaning the closing price of the stock for the next day is predicted based on the 

stock data from the previous 20 days, and the batch size is 36. 

6. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we present comprehensive experiments and analyses conducted to evaluate the 
performance of the proposed BiLSTM-SDTCN-AutoCorr method framework. To investigate the 

predictive performance of this model, we selected four benchmark models for comparison, including 
BiLSTM, Transformer, BiLSTM+CNN, and BiLSTM+Transformer. We conducted comparative 
experiments between BiLSTM-SDTCN-AutoCorr and these models on four different index stock 

datasets to verify its superiority in the stock price prediction task. 

6.1. Overall Performance Comparison 

Table 3. Prediction Metrics of Five Methods on Shanghai Composite Index 

Model MSE MAE RMSE R² 

BiLSTM 0.0037 0.0427 0.0609 0.941 

BiLSTM+CNN 0.0106 0.0732 0.1038 0.873 

Transformer 0.0068 0.0667 0.0826 0.918 

BiLSTM+Transformer 0.0054 0.0596 0.0732 0.931 

BiLSTM-SDTCN-AutoCorr 0.0021 0.0312 0.0458 0.964 
 

Table 4. Prediction Metrics of Five Methods for Four Other Stock Indices  

Stock Model MSE MAE RMSE R² 

000300.XSHG BiLSTM-SDTCN-AutoCorr 0.00116 0.0267 0.0340 0.968 

000300.XSHG BiLSTM 0.00342 0.0398 0.0585 0.941 

000300.XSHG BiLSTM+CNN 0.00679 0.0612 0.0824 0.913 

000300.XSHG Transformer 0.00623 0.0634 0.0790 0.925 

000300.XSHG BiLSTM+Transformer 0.00499 0.0567 0.0706 0.939 

000906.XSHG BiLSTM-SDTCN-AutoCorr 0.00109 0.0254 0.0330 0.971 

000906.XSHG BiLSTM 0.00320 0.0376 0.0565 0.963 

000906.XSHG BiLSTM+CNN 0.00623 0.0587 0.0790 0.928 

000906.XSHG Transformer 0.00579 0.0601 0.0761 0.931 

000906.XSHG BiLSTM+Transformer 0.00457 0.0543 0.0676 0.944 

399006.XSHE BiLSTM-SDTCN-AutoCorr 0.00142 0.0312 0.0377 0.958 

399006.XSHE BiLSTM 0.00416 0.0456 0.0645 0.946 

399006.XSHE BiLSTM+CNN 0.00786 0.0689 0.0886 0.907 

399006.XSHE Transformer 0.00723 0.0712 0.0851 0.912 

399006.XSHE BiLSTM+Transformer 0.00579 0.0623 0.0761 0.928 

399001.XSHE BiLSTM-SDTCN-AutoCorr 0.00133 0.0298 0.0365 0.962 

399001.XSHE BiLSTM 0.00368 0.0412 0.0606 0.958 

399001.XSHE BiLSTM+CNN 0.00723 0.0654 0.0851 0.916 

399001.XSHE Transformer 0.00679 0.0678 0.0824 0.919 

399001.XSHE BiLSTM+Transformer 0.00523 0.0589 0.0723 0.939 

 

All models performed predictions based on the data of five index stocks as shown in Table 1. For 

each stock, five independent tests were executed, and the average of the five results was calculated 
as the final prediction output. Prior to training, all data were standardized using Equation (5). Table 
3 presents the prediction evaluation metrics of the five methods on the Shanghai Composite Index 
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(stock code: 000001.XSHG) dataset; Table 4 shows the performance of the aforementioned five 

methods on the other four index stocks. 

The experimental results demonstrate that the proposed BiLSTM-SDTCN-AutoCorr model 

significantly outperforms all baseline models on the test set. The predictive capabilities of the 
aforementioned five methods, ranked in descending order, are as follows: BiLSTM-SDTCN-

AutoCorr, BiLSTM, BiLSTM+Transformer, Transformer, and BiLSTM+CNN. 

As shown in Table 3, BiLSTM-SDTCN-AutoCorr achieves the best values across key metrics 
including MSE, MAE, RMSE, and R². Specifically, compared to the best-performing baseline model 

BiLSTM, BiLSTM-SDTCN-AutoCorr reduces MSE by 43.2% (from 0.0037 to 0.0021), MAE by 
26.9% (from 0.0427 to 0.0312), and RMSE by 24.8% (from 0.0609 to 0.0458), while increasing R² 

by 2.3% (from 0.942 to 0.964). These improvements not only reflect enhanced prediction accuracy 
but also highlight the model's stronger explanatory power for data variability. This overall 
performance advantage stems from the innovative architectural design of BiLSTM-SDTCN-

AutoCorr, which more effectively captures the complex dynamic patterns in time series, thereby 
achieving higher accuracy and robustness in stock price prediction tasks. Figure 2 and Figure 3 more 

intuitively illustrate the significant advantages of the BiLSTM-SDTCN-AutoCorr model in terms of 
fitting quality and prediction precision, particularly achieving a qualitative improvement in error 
control. The BiLSTM-SDTCN-AutoCorr model excels in capturing the overall upward and 

downward trends of the Shanghai Composite Index, with the predicted curve closely aligning with 
the actual value curve, demonstrating the model's effective modeling of long-term dependencies. In 

the time step interval of 0-50, the model accurately predicts the downward trend of stock prices from 
3100 points to 2900 points; in the time step interval of 500-550, it captures the rapid upward trend 
from 2700 points to 3400 points; and in the time step interval of 125-240, it precisely reproduces the 

oscillatory consolidation in the 3100-3400 point range. This trend-capturing capability benefits from 

the model's effective handling of long-term dependencies. 

 

Figure 2. Comparison of Performance Improvement for Prediction Models 
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Figure 4. Model Prediction Fitting Curve Chart 

6.2. Ablation Experiments 

To quantify the role of each component in model performance, we conducted ablation experiments 

on the CSI 300 (stock code: 000300.XSHG) dataset, with results detailed in Table 5. The complete 
BiLSTM-SDTCN-AutoCorr model achieved MSE, MAE, and R² values of 0.00113, 0.0340, and 

0.969, respectively. Removing the Series Decomposition component increased MSE to 0.00168 and 
decreased R² to 0.952, resulting in an overall performance degradation of approximately 1.3%, which 
confirms the core contribution of this component in enhancing prediction accuracy. Replacing Auto-

Correlation with a traditional attention mechanism led to a further performance degradation of 1.67%, 
thereby highlighting its unique advantage in capturing periodic dependencies in time series. 

Removing TCN as the decoding layer reduced R² to 0.935 (a performance decline of 3.03%), 
verifying the effectiveness of improving the Transformer decoder to a TCN layer. These results 
indicate that the TCN decoding layer contributes the most, followed by the auto-correlation 

mechanism and the series decomposition design, which collectively form the foundation of the 

model's performance. 

Table 5. Performance Metrics of BiLSTM-SDTCN-AutoCorr Model Variants 

Model Variant R² MAE MSE RMSE Performance Drop (%) 

Completed BiLSTM-
SDTCN-AutoCorr 

0.969 0.0340 0.00113 0.0263 0.0 

Without Series 

Decomposition 

0.952 0.0356 0.00168 0.041 1.3 

Without Auto-Correlation 0.948 0.0389 0.00192 0.0438 1.67 

Without TCN Decoder 0.935 0.0423 0.00216 0.0464 3.03 

7. CONCLUSION 

In this study, we introduce an innovative mixed neural network architecture, BiLSTM-SDTCN-

AutoCorr, which integrates BiLSTM for sequence feature extraction, a sequence decomposition 
module for trend-seasonal separation, auto-correlation attention for modeling periodic dependencies, 
and a TCN decoder for local convolution enhancement, thereby systematically optimizing the 

traditional BiLSTM-Transformer framework. The core innovations of this model lie in its dual-path 
encoder-decoder architecture and the integration of the Auto-Correlation mechanism: the former 

enables multi-scale feature separation and fusion, while the latter efficiently captures long-term 
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periodic patterns using Fourier transforms, significantly reducing computational complexity and 

enhancing prediction robustness. 

Experimental results on five Chinese stock index datasets (including the Shanghai Composite Index 

and CSI 300) demonstrate the model's superiority: compared to baseline models (such as BiLSTM, 
Transformer, BiLSTM+CNN, and BiLSTM+Transformer), BiLSTM-SDTCN-AutoCorr achieves 

average improvements of 20%-40% across MSE, MAE, RMSE, and R² metrics. These results not 
only highlight the model's advantages in capturing complex dynamics in stock markets (such as trend 
fluctuations and short-term oscillations) but also provide a solid foundation for its applications in 

real-world financial decision-making (such as risk assessment and investment strategy optimization).  

Although the model exhibits remarkable generalization ability and prediction accuracy, its sensitivity 

to external factors (such as sudden events or macroeconomic policies) remains to be explored. Future 
research could extend to multimodal data fusion (such as integrating news sentiment analysis or 
macroeconomic indicators) or incorporate federated learning to enhance cross-market prediction 

performance under privacy protection. 
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