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ABSTRACT

As a key task in 3D scene understanding, point cloud semantic segmentation has broad application
prospects in fields such as autonomous driving and robot navigation. Existing point cloud
segmentation methods suffer from insufficient local feature extraction and a lack of effectve
integration of global contextual information, leading to inaccurate recogni-tion and incomplete
segmentation of categories with similar surface textures and geometric structures. In view of this,
this paper proposes an improved point cloud segmentation method for RandLA-Net : (1) Local polar
coordinate posi-tion encoding module is introduced to eliminate the impact of Z-axis rotation on
feature learning; (2) Global information acquisition module composed of attention mechanisms is
constructed to enhance the network's contextual perception ability; (3) Hybrid pooling mechanism is
integrated to improve the extraction of local features. The proposed method is evaluated on the self-
built HPU dataset and public datasets S3DIS and Toronto-3D. The results show that the improvec
network achieves mean intersection over union (mloU) values of 90.7%, 71.2%, and 76.4%
respectively, demonstrating improvements compared to other algorithms. The model exhibits
excellent generalization and segmentation perfor-mance in different types of point cloud scenes.

KEYWORDS
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1. INTRODUCTION

With the continuous development of sensor technologies such as LIDAR and stereo cameras, point
cloud data has gradually become an important carrier of three-dimensional spatial information due to
its high precision, high density, and rich semantic information [1]. It has shown immense potential in
numerous fields. For example, it is used for environmental perception and path planning in
autonomous driving [2], for precise object recognition and interaction in robotics [3], and for
constructing 3D worlds in virtual reality [4]. Point cloud semantic segmentation can fully leverage
the value of point cloud datain semantic parsing, aiming to assign corresponding semantic category
labels to each point in the point cloud, thereby achieving fine-grained scene classification and
recognition, and providing fundamental semantic support for scene understanding [5].

In recent years, the rapid development of deep learning technology has revolutionized point cloud
semantic segmentation, with neural networks becoming the recognized mainstream solution in this
field. This advancement can be attributed to the ability of these networks to learn complex features
from data, enabling more accurate segmentation and classification of 3D objects. Deep learning-based
point cloud segmentation methods are broadly categorized into three types: voxel-based methods [6—
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9], multi-view based methods [10-13], and point-based methods. VVoxel-based methods discretize
irregular 3D point clouds into uniform cubic, cylindrical, or spherical grids. This approach allows for
the preservation of essential structural information inherent in 3D data. By transforming irregular data
into a structured format, voxel-based methods leverage traditional deep learning techniques, which
often perform better with regular inputs. However, this benefit comes with significant drawbacks.
The process requires handling and storing a vast number of voxels, which can lead to heightened
memory consumption and computational overhead. The increased complexity of processing these
large grids can limit the scalability of the method, particularly when dealing with highly detailed or
extensive point cloud datasets. Multi-view based methods, also known as 2D projection methods,
engage in projecting 3D objects from various angles to create multiple 2D views. Features are
extracted from each view before being fused into a comprehensive global descriptor that supports
accurate object recognition. Although this method enables the leveraging of established 2D
convolutional networks, it poses a risk of losing critical geometric information during the projection
phase. This loss can adversely affect the overall recognition accuracy, particularly in complex
scenarios where the 3D spatial relationships are pivotal to understanding the object's shape and
structure. Point-based methods represent a more direct approach, processing raw point clouds without
converting them into structured formats like voxels or images. This direct handling helps avoid the
information loss that may occur during conversion processes, allowing for the use of inherent point
cloud characteristics. While PointNet and PointNet++ can directly process point cloud data, they have
insufficient local geometric modeling capabilities [14, 15]. Given that convolution operations can
efficiently capture local spatial features in regular data, researchers have explored applying traditional
convolutional mechanisms to irregular, unordered point cloud data. Works such as PointCNN [16],
PointConv [17], and KPConv define a “"convolution-like" operation directly on raw point clouds to
aggregate neighborhood information and generate features with local context awareness [18],
significantly enhancing the expressive power of point cloud features. However, they still face the
challenge of insufficiently capturing complex scene geometric structures. Subsequent research such
as PointWeb [19], ShellNet [20], and Rand LA-Net extract local features of point clouds through local
adaptive aggregation [21], concentric spherical shells, and local feature aggregation, proving highly
efficient in local feature aggregation, but still lacking in global context modeling.

To further deal with these problems, this paper proposes a point cloud segmentation method based
on rotation invariance and feature aggregation. This method primarily consists of a Local Polar
Representation (LPR) module, a Spatial and Strengthen Channel Attention Mechanism (SSAM)
module, and a Mixed Pooling (MP) module. By effectively extracting global and local features of
point clouds, it aims to better accomplish 3D point cloud segmentation tasks. The main contributions
of this paper are as follows: 1) Integrating the LPR and MP modules, LPR precisely encodes the local
geometric information of point clouds by calculating relative positions, distances, etc., and transforms
it from the Cartesian coordinate system to the polar coordinate system to better capture geometric
relationships under rotation. Mixed Pooling effectively enhances the efficiency of feature extraction
while ensuring feature representation. 2) Proposing the SSAM module, which suppresses background
noise in point clouds and models and integrates global information through a spatial attention
mechanism and an enhanced channel attention mechanism. 3) Conducting experiments on real-world
datasets, the results demonstrate that this method exhibits good generalization ability and
segmentation performance in various types of point cloud scenarios.

2. PROPOSED METHODS
2.1. Folding Model
The baseline model is comprised of an encoder layer and a decoder layer. The encoder layer primarily

consists of random sampling and local feature integration modules, while the decoder layer mainly
performs upsampling operations. The point cloud semantic segmentation method proposed in this
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paper primarily focuses on improving the local feature integration module within the encoder layer
of the baseline model. The overall architecture of the model is illustrated in Figure 1. The entire model
learns complex local semantic features by progressively increasing the receptive field size.

Skip connection

»
1 4
¥
»

s.sL, 8. 8. 3,.8 F 8. 3.¢ =
) e & P mMLPE == > = = = & FCIFCAFC T o
1R R SN N Q K = | J =R _FC s FC e, o N e
- GLFA RS %“‘;;E“‘zz E —»E US| MLP EEE:‘;:’%E z T —»‘r_‘,s.!.,,i 3 s
cREeRENE z z z EZ| B |= ...bf 87 [
= < = < o [ ]
| L
(Noetass)
Encoder - - Decoder
GR GLFA RS us MLP | UM
MLP: Multi-Layer Perceptron RS: Random Sampling US: Up Sampling
GLFA: Global-Local Feature Aggregation FC: Fully Connected DP: Dropout

Figure 1. The structure of the model

Specifically, the model's input is a point cloud of size N*d., where N represents the total number of
points and d. is the feature dimension of each input point. Initially, the dimension of the raw point
cloud data is elevated from (N.d.) to (N.8) through a fully connected layer. This dimension-
enhanced semantic information thenserves as the input to the global-local featureintegration module.
Afterthe feature aggregation module progressively extracts both global information and local detailed
features from the point cloud layer by layer, random sampling is applied to compress the point cloud.
The decoder layer employs efficient upsampling operations to restore the number of points. A Multi-
Layer Perceptron is utilized to adjust the point cloud feature dimensions [22], and skip connections
are implemented to concatenate with intermediate feature maps from the encoder layer, thereby
achieving cross-level fusion of feature information. Finally, Finally, after the feature dimensions are
adjusted by two fully connected layers, a dropout layer is applied for regularization to enhance the
model's generalization capability. Subsequently, another FC layer performs classification, ultimately
outputting the predicted semantic class labels for the point cloud, with its final feature dimension

being (N:nws), where N is the number of predefined semantic categories.

2.2. Global-Local Feature Aggregation Module

The Global-Local Feature Aggregation Module is located within the encoder layer, following the
random sampling operation. The module's architecture is illustrated in Figure 2. This module
integrates sub-modules such as Local Polar Coordinate Position Encoding (LPR), a Spatial and
Channel-Enhanced Global Feature Integration Module, and Hybrid Pooling, all connected via
residual structures. Specifically, the LPR module is employed to learn the local geometric structure
of the point cloud, achieving Z-axis rotation-invariant representation for the same object and
significantly reducing geometric information loss caused by random sampling. Subsequently, the
features re-encoded by the LPR module are concatenated with the original spatial features, and global
contextual information is acquired through the Global Feature Integration Module. The Hybrid
Pooling (MP) module then adaptively preserves salient local features, enhancing the model's ability
to perceive local details. To further enhance the model's feature expression capability, residual
modules are stacked to enlarge the receptive field for feature extraction, thereby strengthening the
model's capacity to capture features at different scales. Finally, the enhanced global and local features
are fused to generate the ultimate feature representation.
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Figure 2. Global-Local Feature Aggregation Structure
2.2.1. Local Polar Coordinate Position Encoding Module

In point cloud segmentation tasks across various categories of scenes, objects of the same class often
exhibit significant directional variability due to natural or anthropogenic factors. This directional
variability poses challenges for traditional feature representations based on Cartesian coordinates, as
they fail to provide rotation-invariant features. Specifically, these features do not remain consistent
when an object is rotated in space, particularly within the horizontal plane. The lack of rotation
invariance can lead to a marked decrease in the robustness of the model during feature extraction,
subsequently impacting segmentation accuracy. To effectively address this challenge, this study
introduces a Local Polar Coordinate Position Encoding module, which transforms the relative
positional information of point clouds into a polar coordinate representation [23]. This transformation
facilitates the generation of rotation-invariant features, significantly enhancing the model's ability to

perceive objects from different orientations. The structure of this module is illustrated in Figure 3.

Local Direction
»

»

Z-axis | .’.{'\ >
Rotation \‘\/

Relative Angle Invariant

Local Polar
Representation

Spatial
Information

Relative Distance

Figure 3. Local Polar Coordinate Position Encoding Structure
This module takes the spatial geometric information of all points as input. Before calculating the local
direction, relative angles, and relative distances, it requires the aggregation of neighboring points
{pl..p-p} for each central point P using the K-NN (K nearest neighbors) algorithm. The
calculations for the Euclidean distance (dis‘), azimuth angle (#‘), and elevation angle (&) of each

neighboring point P in polar coordinates are as follows:

dist =[xk +y< 7 )

k

gpik = arctan(% (2)

K z:
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In the equations, (X v.z‘) denotes the coordinates of P: in the Cartesian coordinate system.

To compute the azimuth angle « and elevation angle 4 for point b relative to the average
position of its neighborhood, updates are performed through equations (4) and (5), yielding the
azimuth angle difference ¢ and elevation angle difference 6.

o =0, )

ok=0.-B, (5)

Finally, the angle's magnitude is adjusted based on therelative distance in the polar coordinate system,
facilitating the expansion of spatial features. This process refines the relationship between point k and

its neighboring spatial features.
2.2.2. Global Feature Integration Module

Local feature extraction often struggles to sufficiently capture the long-range dependencies between
points, leading to poor segmentation results in complex scenes. To address this issue, we propose a
Global Feature Integration module composed of a spatial attention mechanism and an enhanced
channel attention mechanism. This module aims to extract global information and improve the
model's segmentation performance in complex scenarios.

When noise is present in the point cloud data, it can interfere with the extraction of effective features.
The introduction of a Spatial Attention Mechanism (SAM) can enhance the response of key regions
while suppressing background interference. Its structure is illustrated in Figure 4.
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Figure 4. Spatial Attention Structure

The spatial information of the original point cloud and the results obtained from the segmentation
stage are combined as input F*°, where N denotes the number of point clouds and D represents the
spatial dimensionality. The spatial dimensionality is utilized to maximize the spatial information at

each point through a pooling operation, obtaining features Fi. and Fas . These two sets of features

will be concatenated, and the concatenated features are then passed into a Multi-Layer Perceptron for
further processing. Finally, the output is processed through a Sigmoid activation function to obtain

the spatial attention weights F.. , expressed as follows:
Fi=o(M(c(Fi2FL) 6)

In the equation, C represents a concatenation operation, M indicates a shared-weight MLP layer,
and o denotes the Sigmoid activation function.
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By using equation (7), the initial point features F"° are combined with the spatial attention weights
Fa, resulting in the final spatial feature enhancement of the elements. The output Fg., is expressed
as F'° ® F,*, where ® represents the element-wise multiplication.

Fon=Fu®F" (7)

The different channel features of point clouds exhibit variability in their expressive capabilities. By
combining the channel attention module with a squeeze and excitation mechanism, we obtain an
improved enhanced channel attention module. This module can effectively suppress noise in spatial
key regions while simultaneously strengthening the important channel features. The structure of the
Enhanced Channel Attention (Strengthen Squeeze and Excitation, SSE) is illustrated in Figure 5.
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Figure 5. Enhanced Channel Attention Structure

Specifically, let F<R™ be the input, where N denotes the number of point clouds, and D reflects
the dimensionality of the spatial features. The channel attentionmodule aims to learn the relationships
between these channel dimensions, allowing for adjustments based on their dependencies.

In the enhanced channel attention module, we can obtain the max pooling channel features Fu. and
the average pooling channel features Fag . Subsequently, the max pooling features and the average

pooling features are concatenated. The concatenated features are then subjected to a shared two-layer
MLP for nonlinear transformation. The first layer compresses the channel dimensionality and uses
the ReL. U activation function, while the second layer restores the channel dimensionality.

After processing through the Sigmoid activation function, the features of each channel are mapped to
the range of (0, 1), resulting in the channel attention weights, which contain the weight information
for each channel, as shown in equation (8). This channel attention feature map is then expanded to
match the size of the intermediate features F<R™ . Finally, by performing element-wise

multiplication, we obtain the final output features Fl. that incorporate the intermediate features,
which can be expressed as follows:

Fro=olW s (c(Fi2 F)) ®)
Fom=Fa®F"" ©)

In the equation, C denotes the concatenation operation, W: represents the channel compression
operation, J signifies the ReLU activation function, W. indicates the channel restoration operation,
o refers to the Sigmoid activation function, ® represents the element-wise multiplication
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2.2.3. Hybrid Pooling

In point cloud processing tasks, attention pooling is utilized to aggregate local features, thereby
highlighting key information. However, the weights assigned in this process can be easily affected
by noise and other non-critical features, resulting in a decrease in the accuracy and effectiveness of
feature extraction. To addressthis issue, this paper proposes a hybrid pooling method that combines
attention pooling with max pooling to merge point features into a single feature value vector. Max
pooling is employed to extract key point features, while attention pooling is used to differentiate
important neighboring point features. The structure of the hybrid pooling approach is illustrated in
Figure 6.
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Figure 6. Hybrid Pooling Structure

The features obtained from the spatial information through the local polar coordinate positional
encoding module, combined with the point cloud's k-nearest neighbor features, serve as the input for
the hybrid pooling. The feature vectors obtained from the max pooling branch and the attention
pooling branch are concatenated, and then processed through an MLP layer to adjust the channel
dimensions, resulting in the aggregated features. The calculation for max pooling is depicted in
equation (10), where p denotes the k-nearest neighboring points for each point, and f(p)

represents the feature vectors of all neighboring points.

After passing through the shared MLP layer and applying the Softmax activation, the attention
pooling yields an attention weight score. The input features are then weighted and summed using
these attention scores to obtain the feature vector from attention pooling, as shown in equation (11),

where 9() represents the learned attention score.

Finally, the results from max pooling and attention pooling are concatenated and processed through
a shared MLP layer to produce the final aggregated features, as expressed in equation (12), where C

denotes the concatenation operation.

F ... = MaxPool {f ( plk)} (10)
Fo-2{i(p))s(1 (0]} an
F o=C(F e Fu) (12)

3. ANALYSIS AND DISCUSSION

3.1. Dataset and Environment Setup

This paper evaluates the effectiveness and robustness of the model using the self-built HPU dataset,
the S3DIS dataset, and the Toronto-3D dataset. An introduction to the datasets is provided in Table

1, with the self-built HPU dataset illustrated in Figure 7.
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Table 1. Dataset Introduction

Attribute Self-built HPU S3DIS [24] Toronto-3D [25]
Information
Number of Approximately 280 Approximately 690 -
Points million million ORIt Lo
. 3D coordinates, color,
Point Cloud 3D coordinates, color 3D ccz:c())rltilrnates, intensity, GPS time,
scanning angle
Scene Tpye Campus scene Indoor scene Outdoor urban road scene
Acquisition LIiDAR Laser scanner Mobile LIDAR
Method
Classified into 5 Classified into 13
categories: buildings, L e -
. . categories: ceiling, = Classified into 8 categories:
vehicles, street lights, .

. . floor, wall, beam, road, road markings, natural
Semantic roads, and vegetation | ind buildi ity i
Elements Seszd] O @ EETe column, window, trees, buildings, uti |ty ines,

. door, table, chair, telephone poles, vehicles,
outdoor point cloud
sofa, bookshelf, and fences
datasets and the
L board, and others
characteristics of the scene
Divided into training, 6 regions used for . . .
Dataset Split = validation, and test sets in six-fold cross- 4 regions, with Region 2 as
. L the test set
a6:2:2 ratio validation

(a) image

Figure 7. HPU Dataset

The experiments were conducted on an Ubuntu 18.04 operating system, utilizing an NVIDIA RTX
A6000 GPU with 48GB of memory, and the model was built using the TensorFlow-GPU 2.6
framework. The loss function employed is the weighted cross-entropy loss, and the optimizer used is
Adam. The training consists of 100 iterations, with a batch input size of 4.

For the HPU dataset, the initial learning rate is set to 0.001, with the number of points in the input
scene being 65,536. For the S3DIS dataset, the initial learning rate is set to 0.01, with the number of
points in the input scene being 40,960. Inthe Toronto-3D dataset, the initial learning rate is also set
to 0.01, with the number of points in the input scene being 65,536.

3.2. Experimental Results and Analysis
Representative models were selected to evaluate the proposed HPU dataset, and robustness tests were

conducted on the S3DIS and Toronto-3D datasets. The experimental results are represented using
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Overall Accuracy (OA), mean Accuracy (mAcc), Mean Intersection Over Union (mloU), and
Intersection Over Union (loU).

Tables 2, 3, and 4 present the experimental results of the proposed model compared to representative
models on the HPU dataset, S3DIS dataset, and Toronto-3D dataset, respectively. From Table 2, it
can be observed that RandLA-Net outperforms several other models in terms of the mloU metric,
with significantly better segmentation results for buildings. Compared to the RandLA-Net model, the
proposed model shows improvements of 4%, 3.7%, and 5% in OA, mAcc, and mloU, respectively,
achieving the best segmentation results for vehicles, roads, and vegetation.From

Table 3, it is evident that the proposed model improves the mloU metric by 1.2% compared to
RandLA-Net, with enhancements in both OA and mAcc metrics. Moreover, compared to other
publicly available point cloud segmentation models, the proposed model achieves the best
segmentation results for categories such as beams, windows, sofas, bookshelves, and boards. Table 4
indicates that the proposed model also improves the mloU metric by 2.6% relative to RandLA-Net,
with significantly better segmentation results for natural trees and buildings. In comparison with the
RandLA-Net model, the proposed model achieves the best segmentation results for categories like
roads, buildings, and vehicles, and demonstrates commendable segmentation performance for natural
trees, utility lines, telephone poles, and fences.

Table 2. Evaluation results on the HPU dataset (Unit: %)
loU

Method OA mAcC mloU 0 .
car light road veg build
PointNet++ [15] 95.8 72.9 66.9 61.5 8.0 80.0 979 87.2
DLA-Net [26] 96.7 93.6 84.7 953 518 865 977 924
BAAF-Net [27] 94.8 945 85.6 949 677 791 935 92.8
RandLA-Net [21] 94.8 93.1 85.7 955 657 793 89.2 98.9
Ours 98.8 96.8 90.7 95.7 66.0 955 @ 97.7 98.8

Table 3. Evaluation results on the S3DIS dataset (Unit: %)

Tou
Method OA | mAcc | mloU
ceil. | floor wall beam  col.  wind. = door | table @ chair sofa | book. board @ clut.
PointNet

[14]

78.6 66.2 476 880 | 887 693 424 231 475 51.6 54.1 42.0 9.6 382 294 352

SPGraph
28] 86.4 73.0 621 899 951 764 628 471 553 68.4 73.5 69.2 632 459 87 52.9
PointWeb
(19] 873 76.2 667 | 935 942 | 808 524 413 649 68.1 71.4 67.1 50.3 62.7 622 585
ShellNet
(18] 87.1 — 668 | 902 936 799 604 441 649 529 71.6 847 53.8 646 @ 48.6 594
DLA-Net
26] 86.0 79.9 658 | 913 968 | 756 590 487 568 60.1 71.8 81.0 53.8 638 | 412 555
RandLA-

88.0 820 700 | 931 961 806 624 480 644 69.4 69.4 76.4 60.0 64.2 65.9 60.1
Net [21]
Ours 88.2 82.1 712 1932 960 | 805 644 480 652 69.1 | 71.2 80.3 66.6 64.8 66.3 59.8
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Table 4. Evaluation results on the Toronto3D dataset (Unit: %)

Tou
Method OA mloU road  rdmrk | natural = building @ util line | pole car fence
PointNet++ [15] 92.6 59.5 92.9 0.0 86.1 82.2 60.9 628 | 764 14.4
DGCNN [29] 94.2 61.7 93.9 0.0 91.3 80.4 62.4 623 | 883 15.8
MS-PCNN [30] 90.0 65.9 93.8 3.8 935 82.6 67.8 719 | 91.1 225
DLA-Net [26] 93.3 76.1 90.9 32.4 96.0 92.3 87.1 758 | 89.9 @ 442
BAAF-Net [27] 942 70.8 89.1 6.3 96.3 93.2 86.1 82.1 86.6 | 299
RandL A-Net [21] 94.9 73.8 93.6 17.1 96.1 922 86.4 792 | 879 37.8
Ours 93.8 76.4 91.6 29.4 96.8 93.3 86.7 798 | 90.8 @ 429

The experiment visualized a portion of scene data from the three datasets, as illustrated in Figures 8,
9, and 10. In each figure, from left to right, the images represent the original point cloud, the ground
truth labels, the segmentation results of the baseline model, and the segmentation results of the
proposed model, respectively. From Figures 8 and 10, it can be observed that the baseline model
achieves relatively good segmentation results for large-scale categories such as buildings. However,
dueto its lack of global context information capture and the inability to extract detailed local features,
it tends to misclassify when segmenting different types of objects with similar local features, such as
roads and low vegetation in Figure. In Figure, when processing categories such as walls, beams, roofs,
doors, windows, and boards that are on the same plane, incomplete and inaccurate segmentation
results are observed for categories like boards, walls, and bookshelves. Furthermore, in Figure 10,
while dealing with fine linear structures such as road markings and utility lines, there are instances of
disconnection, fragmentation, and even loss of segmentation.

The proposed model effectively models global context information, enhancing its ability to recognize
classes with long-range dependencies, thereby accurately segmenting most categories. This
improvement is evident in Figures 8 and 9, where the model can accurately segment ground objects
with similar structures. The segmentation results for large-scale objects such as walls and complex
objects like bookshelves are more complete, effectively alleviating misclassification issues. By
modeling the Z-axis rotational invariance of the relative positions of the points, the segmentation
accuracy for directional objects, such as sofas and chairs, is improved. In the mixed scene of sparse
and dense point clouds shown in Figure 10, the proposed method results in more continuous and
complete segmentation of road markings, demonstrating a notable improvement.

Point cloud Ground truth RandLA-Net Ours

Car Light Road Vegetable Build

Figure 8. Semantic segmentation results of the HPU dataset

58



Point cloud Ground truth RandLA-Net Ours

— =
=1
- Iy

=

0 ceiling [ floor || wall beam [ column [ window | door
[ table N chair [ sofa [ bookcase board [ clutter

Figure 9. Semantic segmentation results of the S3DIS dataset (Area5)

Point cloud Ground truth RandLA-Net Ours
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Figure 10. Semantic segmentation results of the Toronto3D dataset
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3.3. Ablation Experiments

To explore the contributions of different modules in the proposed model, ablation experiments were
conducted on the Position Encoding Module (LPR), the Mixed Pooling Module (MP), and the Global
Feature Integration Module (SSAM). The following variations were tested: 1) Baseline model results.
2) Replacement of the original position encoding module with the local polar coordinates position
encoding module. 3) Replacement of the original attention pooling module with the mixed pooling
module. 4) Addition of the global feature integration module. 5) Replacement of the position
encoding module and addition of the global feature integration module. 6) Replacement of the
position encoding module and attention pooling module, and addition of the global feature integration
module. The above experiments were conducted on the HPU, S3DIS (Area 5), and Toronto-3D point
cloud datasets. The experimental results are presented in Table 5.

Table 5. Ablation study results on different datasets(mloU)

Dataset

Method HPU S3DIS (Area5) Toronto-3D
Baseline 85.7 62.5 73.8
LPR 89.3 62.6 72.1
MP 87.8 63.2 73.9
SSAM 89.9 63.3 73.0
LPR+SSAM 90.4 63.4 743
LPR+SSAM+MP 90.7 63.5 76.4

From Table 5, it can be seen that by introducing the local polar coordinates position encoding module
to model the local spatial features of the point cloud, the model can learn characteristics that are
invariant to Z-axis rotation. This enables a more comprehensive learning of the geometric structure
of the same ground object, achieving mean Intersection Over Union (mloU) scores of 89.3%, 62.6%,
and 72.1% on the three datasets, respectively. Building upon this, after adding the global feature
integration module, the model's mloU performance improves across the three datasets, indicating that
the model effectively integrates the global context information of the point cloud and enhances its
capacity for global feature representation of the scene. Lastly, to enhance the model's ability to
perceive details, the performance reached its optimal level after incorporating the mixed pooling
module.

The global feature integration module is formed by combining the spatial attention module and the
enhanced channel attention module. If the two modules use different connection methods, there may
be slight differences in the experimental results. To investigate this, experiments were conducted on
the HPU dataset with different connection methods. The two modules were connected in both series
and parallel configurations. CM1 and CM2 represent the series connection, where they are
concatenated in different orders, while CM3 represents the parallel connection, where the SAM and
SSE modules are connected simultaneously. We conducted experiments to evaluate their impact on
semantic segmentation performance, with the specific connection methods illustrated in Figure 11.

[sam s e | o saM ) |

e T e B

CssE ] o[sAM . M
CM2

Figure 11. Different Connection Methods
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Table 6. Ablation Results of Different Connection Methods

Different Connection mloU/%
CM3 89.92
CM2 90.30
CM1 90.74

From Table 6, it can be observed that the series connection method CM1 achieves the highest mean
Intersection Over Union (mloU), followed by CM2, while CM3 exhibits the lowest accuracy. This
experimental result indicates that, in this specific semantic segmentation model, the strong
dependence on the spatial position information of the point cloud allows the series connection method
CM1 to yield better segmentation results. In practical applications, the choice of an appropriate
connection method should be weighed and selected based on the specific model structure and task

requirements.

4. DISCUSSION

The proposed point cloud semantic segmentation model, based on rotation invariance and feature
aggregation, effectively enhances multi-scale feature representation and improves the model’s
capacity to perceive complex geometric structures through the integration of local polar coordinate
encoding, global feature fusion, and hybrid pooling mechanisms. Experimental evaluations
demonstrate superior performance across diverse datasets, particularly in addressing the segmentation
accuracy and completeness for geometrically similar categories. Nevertheless, certain challenges
remain to be addressed.The integration of spatial and enhanced channel attention mechanisms
strengthens the model’s ability to capture global contextual information, segmentation performance
still declines under highly complex scenarios such as sparse local point clouds, noise interference,
and fine-grained category distinctions. This indicates that the current approach to balancing local
geometric detail extraction and global semantic integration requires further refinement. Future work
may explore the incorporation of richer geometric priors or multi-scale multimodal information to
improve robustness and generalization.The rotation-invariant characteristic of the model successfully
mitigates the impact of spatial rotations on feature extraction, its stability and applicability under
complex rotational transformations and multi-angle 3D variations require more comprehensive
empirical validation. Subsequent studies should investigate more generalized geometric
transformation invariance theories to bolster adaptability in dynamic real-world environments.

Computational efficiency and resource demands remain practical considerations. Although hybrid
pooling contributes to improved feature extraction efficiency, the reliance on attention mechanisms
and deep multi-layer fusion structures entails substantial computational overhead, potentially limiting
deployment in resource-constrained or real-time scenarios. Therefore, research into model
compression and inference acceleration is equally critical.

In summary, this study presents a promising framework that effectively integrates local and global
information to advance segmentation accuracy. Future research directions should focus on enhancing
the model’s adaptability, operational efficiency, and explainability to better address the challenges
posed by increasingly complex three-dimensional vision tasks.

5. CONCLUSIONS

Based on the above research,the following conclusions are derived: 1) Introducesa deep learning-
based point cloud semantic segmentation method that leverages rotation-invariant feature encoding
and multi-mechanism feature aggregation to achieve robust local geometric understandingand global
contextual integration. By incorporating a local polar coordinate position encoding module, spatial
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and channel-enhanced attention mechanisms, and a hybrid pooling strategy, the proposed model
substantially improves segmentation accuracy and generalization. 2) Extensive experiments on a self-
constructed HPU dataset as well as the public S3DIS and Toronto-3D datasets demonstrate that the
proposed method outperforms existing state-of-the-art algorithms, delivering consistent
improvements in multiple metrics across diverse semantic categories and scene types.The rotation-
invariant encoding effectively addresses feature distortion caused by spatial rotations, the global
feature integration module enhances long-range dependency modeling, and the hybrid pooling
module preserves key local details. Ablation studies confirm the independent and synergistic
contributions of these components, validating the soundness of the design. 3) Despite these advances,
challenges remain in addressing extremely complex and dynamic scenarios, particularly concerning
fine-grained feature extraction and computational efficiency. Future work will focus on integrating
multimodal data and optimizing network architectures to enhance detailed feature capture, while
pursuing lightweight designs suitable for practical deployment.
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