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ABSTRACT  

Transparent objects challenge monocular perception due to refraction, reflection, and weak textures, 
which hinder accurate depth estimation and segmentation. To overcome these issues, we propose 
CESINet, a curvature-enhanced synergistic attention network for transparent object perception. 
CESINet explicitly incorporates surface curvature as a high-order geometric prior to strengthen 
spatial representation and introduces a curvature-guided synergistic attention module to enable 
effective cross-task feature interaction between depth and segmentation branches. A curvature 
consistency loss further enforces geometric coherence across predictions. Experiments on the 
ClearPose dataset show that CESINet achieves 94.33% mIoU and 98.27% mAP for segmentation, 
improving over the multi-task baseline ISGNet by 1.49% and 0.44%, respectively. For depth 
estimation, CESINet attains an RMSE of 0.112 and REL of 0.060, reducing errors by 8.9% and 
11.8% compared with the baseline. Ablation results demonstrate that removing curvature priors or 
attention modules leads to performance drops of up to 3.5% in segmentation and 12% in depth 
accuracy, confirming the complementary benefits of explicit geometry and synergistic learning. 
Overall, CESINet enhances geometric consistency and boundary sharpness while maintaining 
computational efficiency, providing a unified and scalable framework for multi-task transparent object 
understanding. 
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1. INTRODUCTION 

Transparent objects pose persistent challenges for detection, segmentation, and geometric estimation 
due to appearance–background coupling induced by refraction and weak texture, leading to unstable 
boundaries and ambiguous shape reconstruction. Chen et al. introduced TOM-Net, which formulates 

transparent object matting as a refractive-flow estimation problem. Their two-stage network jointly 
regresses object masks, attenuation, and refractive fields from a single image, thus incorporating the 

coupling between transmission and geometry into an end-to-end learning framework [1]. 
Subsequently, Sajjan et al. proposed ClearGrasp, which performs synthetic-to-real mixed training to 
jointly infer surface normals and depth, effectively correcting missing and distorted depth for 

transparent objects and embedding explicit geometric constraints into downstream grasping and 3D 

reconstruction [2]. 
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To enable more challenging segmentation benchmarks, Xie et al. released the Trans10K dataset and 
developed the boundary-aware TransLab, emphasizing the significance of boundary cues for 
transparent region segmentation [3]. In parallel, Kalra et al. incorporated polarization cues into deep 

networks, demonstrating that multimodal physical imaging effectively decouples transparent regions 
from their backgrounds [4]. Fang et al. further published the TransCG dataset [5], while Wang et al. 

proposed MVTrans, exploiting multi-view information to enhance geometric consistency and 
registration quality [6]. In broader 3D vision contexts, Hamdi et al. introduced MVTN, a multi-view 
transformation network that learns viewpoint transformations to substantially improve 3D 

understanding, validating the efficacy of multi-view features in complex scene modeling [7]. 

At the feature modeling level, attention mechanisms provide an effective dynamic reweighting 

strategy for scenes characterized by weak textures, strong boundaries, and sparse geometry. Woo et 
al. proposed the Convolutional Block Attention Module (CBAM), which has demonstrated the 
effectiveness of channel–spatial attention across various vision tasks [8]. In the field of visual 

question answering, Lu et al. introduced co-attention mechanisms, enabling bidirectional guidance 
between modalities for semantic alignment [9], an idea later extended to visual multi-task learning. 

Among these extensions, Yu et al. proposed Multidimensional Collaborative Attention (MCA) [10], 
while Cui et al. incorporated collaborative multi-task structures to mitigate negative transfer in unified 
frameworks [11]. Similarly, Misra et al. developed the Cross-Stitch Unit, which adaptively balances 

shared and task-specific representations through linear combinations across tasks [12], providing a 
foundation for synergistic attention mechanisms in transparent object perception. Overall, despite 

progress from both the data and modeling perspectives, the exploitation of high-order geometric 

priors remains insufficient. 

To address the aforementioned limitations, Liu et al. [18] proposed a unified framework for 

monocular depth estimation and transparent object segmentation, incorporating an iterative semantic–
geometric fusion mechanism that achieved promising results on both tasks. This work established a 
deep coupling between semantic and geometric representations in transparent scenes, significantly 

improving perception accuracy. However, it did not explicitly exploit high-order geometric priors 
such as surface curvature. As an intrinsic descriptor of local shape, curvature exhibits strong stability 

independent of texture and illumination variations. Recent studies have shown that integrating 
curvature as an explicit geometric constraint can substantially enhance surface modeling and 
perception performance. For instance, SR-CurvANN demonstrated the advantages of curvature-

driven surface reconstruction [13]; Harrison et al. revealed that using curvature as an input feature 
markedly improves segmentation and classification performance [14]; and the CFPS method 

leveraged curvature-guided point cloud sampling to achieve higher accuracy in classification and 
segmentation tasks [15]. More recent research has further confirmed that Gaussian curvature serves 
as a strong prior for stereo matching and depth estimation [16]. Nevertheless, most existing methods 

for transparent object perception rely primarily on gradient or normal constraints [17], without 

explicitly incorporating curvature information to enhance local geometric modeling. 

Building upon the framework proposed by Liu et al. [18], this paper further introduces a curvature-
enhanced geometric prior and proposes an improved method for transparent object perception. The 

main contributions of this work are summarized as follows: 

(1) We propose a novel approach that explicitly incorporates surface curvature as a high-order 
geometric prior directly into a deep neural network, enabling the model to exploit curvature-aware 

geometric cues during learning. 

(2) We design a curvature-enhanced synergistic attention mechanism that facilitates efficient 
geometric information exchange between multiple tasks, thereby improving cross-task feature 

interaction and semantic consistency. 

(3) We introduce a curvature consistency loss (𝐿𝑐𝑢𝑟𝑣) into a hybrid loss formulation, ensuring that 
predictions not only approximate ground truth at the pixel level but also maintain structural coherence 
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in three-dimensional geometry. This design produces sharper segmentation boundaries and more 

accurate depth estimation results. 

2. PROPOSED METHOD 

This paper proposes a Curvature-Enhanced Synergistic Iterative Network (CESINet), an end-to-end 
multi-task learning framework designed to simultaneously address transparent object segmentation 

and depth estimation. Unlike existing methods, CESINet explicit ly integrates curvature-derived 
geometric priors and employs an iterative decoding mechanism to achieve deep cross-task interaction. 
By introducing geometric constraints between the segmentation and depth branches, CESINet 

effectively alleviates the challenges of boundary ambiguity and depth inconsistency in transparent 

regions, thereby achieving synergistic optimization of both tasks. 

2.1. Overall Framework 

As illustrated in Figure 1, CESINet consists of four main components: an encoder, parallel feature 
streams for segmentation and depth, a curvature prior branch, and an iterative decoder. The input 

RGB image is first processed by a Vision Transformer (ViT) encoder to extract multi-scale contextual 
features. Then, two task-specific feature streams are constructed to learn representations for 

segmentation and depth estimation, respectively. Meanwhile, curvature features computed from the 
depth map serve as explicit geometric priors, which are injected into the decoding process to enhance 
3D structural reasoning. The iterative decoder progressively fuses segmentation, depth, and curvature 

features across multiple scales, refining predictions through several iterations to produce both a 
semantic segmentation mask and a continuous depth map. This unified design enables CESINet to 

perform geometry-constrained multi-task modeling within a single framework.  
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Figure 1. Overall architecture of the proposed CESINet framework 

2.1.1. Backbone Network Module 

CESINet adopts the Vision Transformer (ViT) as its backbone feature extraction network. Originally 
proposed by Dosovitskiy et al. [19], ViT divides the input image into fixed-size patches, flattens each 

patch into a vector, and processes the resulting sequence through a standard Transformer encoder for 
global representation learning. Compared with conventional Convolutional Neural Networks (CNNs), 
which are limited by local receptive fields, the Transformer architecture leverages self -attention 

mechanisms to capture long-range dependencies across image regions. This enables ViT to better 
model complex structures and contextual relationships, which is particularly beneficial in transparent 

object perception, where scenes often exhibit blurred textures, weak edges, and strong contextual 
correlations. Consequently, ViT serves as a robust backbone that provides rich multi-scale contextual 

features for both segmentation and depth estimation tasks in CESINet. 
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2.1.2. Backbone Network Module 

Since the Vision Transformer encoder outputs a one-dimensional sequence of tokens without explicit 
spatial structure, it is not directly suitable for dense prediction tasks. To address this issue, CESINet 

introduces a Reassemble Module, which reconstructs the spatial layout of token embeddings and 
transforms them into two-dimensional feature maps. Following the methodology proposed in DPT 

[20], this module establishes task-specific multi-scale feature pyramids for both depth estimation and 

semantic segmentation. 

Specifically, the reassembly process involves two main steps: 

(1) Feature Reshaping: 

For the token sequences output from each selected layer of the encoder, the module reshapes them 

into two-dimensional feature maps with spatial dimensions (h, w), thereby restoring the spatial 

correspondence lost during the tokenization process. 

(2) Parallel Pyramid Construction: 

The module then constructs two parallel multi-scale feature pyramids for the subsequent tasks—depth 
estimation and semantic segmentation. The reshaped feature maps are passed through a projection 

layer (typically implemented as a 1×1 convolution) to generate two independent feature branches: 

 
𝑃𝑑 = 𝐹𝑑1 ,𝐹𝑑2 , 𝐹𝑑3, 𝐹𝑑4  

 
𝑃𝑠 = 𝐹𝑠1 , 𝐹𝑠2 , 𝐹𝑠3 , 𝐹𝑠4  

 

In both pyramids, the feature map resolution decreases progressively while the channel dimension 
increases, forming a coarse-to-fine hierarchy. This design provides rich multi-scale contextual 
information and ensures that both tasks receive well-aligned and semantically consistent feature 

representations for the subsequent iterative decoding process. 

2.1.2. Curvature Synergistic Iterative Decoder 

The Curvature Synergistic Iterative Decoder (CSID) is designed to progressively refine the 
predictions generated by the encoder through an iterative optimization and collaborative fusion 
strategy. In complex transparent object scenes, single-pass decoding frameworks often struggle to 

achieve structurally consistent results. For example, although TransDepth [21] introduces global 
contextual modeling via Transformers, its one-time fusion strategy still leads to depth misalignment 

and blurred boundaries around reflective or refractive regions. To overcome this limitation, CESINet 

employs a multi-scale, coarse-to-fine decoding strategy with N iterative refinements. 

Each iteration in CSID consists of four decoding stages, gradually upsampling features from the 

lowest to the highest resolution. The key mechanism enabling effective fusion is the Curvature-
Integrated Synergistic Channel–Spatial Attention (CI-SCSA) Fusion, which operates at every 

decoding scale. The iterative design ensures that each stage benefits from both the historical 
information of previous iterations and the current geometric features, thereby refining fine-grained 

structures such as object edges and transparent boundaries. 

The iterative optimization process includes two major components: 

Iterative Refinement Strategy: 

The decoder does not complete prediction in a single forward pass but repeats the process N times. 
During the n-th iteration, it receives not only the reassembled features from the encoder but also the 
refined features from the (n−1)-th iteration. A lightweight Gated Unit regulates the integration 

between historical and current information, enforcing a gradual transition from coarse to fine 
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representations. This iterative refinement enables the network to focus on detailed regions 

progressively, leading to sharper segmentation and smoother depth surfaces. 

Synergistic Fusion Mechanism: 

At each scale of every iteration, a Synergistic Channel–Spatial Attention (SCSA) module replaces 
the conventional feature concatenation operation [22]. The SCSA module performs dynamic 

reweighting across spatial and channel dimensions to facilitate cross-task information exchange. It 

takes three inputs: (1) the depth feature map 𝐹𝑑; (2) the segmentation feature map 𝐹𝑠; and (3) the 

projected curvature map 𝐶𝑚𝑎𝑝 .Through spatial–channel attention computation, SCSA adaptively 

assesses the importance of each feature source and fuses them accordingly. The segmentation branch 

provides semantic region cues that guide smooth surface reconstruction in the depth branch, while 
the curvature map contributes explicit geometric priors that enhance boundary sharpness and 

geometric consistency. Consequently, CSID achieves deep synergy among semantic, geometric, and 

curvature-aware representations, leading to more accurate and structurally coherent predictions. 

3. CURVATURE-GUIDED GEOMETRIC MODELING 

3.1. Curvature Feature Extraction from Depth Maps 

Transparent objects often lack distinctive texture cues; thus, accurate perception in terms of depth 

estimation and semantic segmentation largely depends on geometric information, such as object shape 
and surface curvature. Traditional approaches typically rely on dense point cloud data to compute 

curvature; however, in monocular depth estimation scenarios, curvature features must be extracted 

directly from the predicted or intermediate depth maps. 

During depth map acquisition, the raw sensor outputs frequently contain noise, missing values, and 

out-of-range measurements, which can significantly degrade geometric reliability. Therefore, a series 
of preprocessing steps are applied to enhance data quality before curvature computation. First, invalid  

or missing depth values are detected and corrected to avoid numerical bias in subsequent calculations. 
Then, median filtering and bilateral filtering are performed to remove local noise while preserving 
critical edge structures. For depth values exceeding the sensor’s valid measurement range, clipping 

or masking operations are applied to constrain them within a physically reasonable domain. 
Subsequently, the preprocessed depth data are normalized to a predefined range to ensure 
compatibility with standard image processing pipelines. Finally, the normalized depth values are 

mapped to grayscale or pseudo-color images, providing an intuitive visualization of depth information. 

The overall preprocessing workflow is illustrated in Figure 2. 

Invalid Value 
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Cutting/Mask 
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Rendering  

Figure 2. Preprocessing pipeline for raw depth map denoising and normalization 

We propose a method to derive curvature features directly from two-dimensional depth maps, where 
the depth map can be regarded as a height field z=D(x, y). The curvature of a surface at a given point 

describes the degree of local bending of that surface. The two primary curvature measures—mean 
curvature and Gaussian curvature—can be computed from the first- and second-order partial 

derivatives of the depth function D with respect to the image coordinates x and y. 

By treating the depth map as a Monge patch, represented as (x, y, D (x, y)), the mean curvature 𝐻𝑐 

and Gaussian curvature 𝐾𝑐  of the surface can be calculated using the following formulations: 
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𝐾𝑐 =
𝑍𝑥𝑥𝑍𝑦𝑦 −𝑍𝑥𝑦

2

(1 + 𝑍𝑥
2 + 𝑍𝑦

2)2
 

 

𝐻𝑐 =
(1 + 𝑍𝑥

2)2𝑍𝑦𝑦 − 2𝑍𝑥𝑍𝑦𝑍𝑥𝑦 + (1+ 𝑍𝑦
2)2𝑍𝑥𝑥

2(1 + 𝑍𝑥
2 + 𝑍𝑦

2)3/2
 

 

Considering that the two curvature measures described above are sensitive to noise, an additional and 

more robust curvature descriptor—the Laplacian operator of the depth map—is introduced: 

 

𝛻2𝑍 = 𝑍𝑥𝑥+𝑍𝑦𝑦                                 

 

The Laplacian operator, 𝛻2𝑍, provides a scalar value at each pixel, indicating the local convexity or 
concavity of the surface at that point. By concatenating the three curvature representations described 
above—mean curvature, Gaussian curvature, and Laplacian curvature—a multi-channel curvature 

feature map, 𝐶𝑚𝑎𝑝 ∈ 𝑅
3×𝐻×𝑊

, is constructed. This feature map is subsequently injected into different 

stages of the network decoder, providing explicit geometric cues about the shape of transparent 

objects. It assists segmentation by sharpening curved boundaries and improves depth estimation by 

enhancing geometric consistency across the reconstructed surface. 

 

Figure 3. Visualization of curvature feature maps derived from depth maps 

3.2. Curvature-Constrained Multi-Task Iterative Optimization in CESINet 

Accurate depth reconstruction and semantic segmentation of transparent objects are tightly coupled 
tasks. Precise object contours provide crucial boundary constraints for depth estimation, while 

accurate depth information, in turn, helps differentiate objects from the background, thereby refining 
segmentation results. However, effectively leveraging this inter-task complementarity and 
incorporating more refined geometric priors remains a key challenge in multi-task learning. This 

section details how CESINet addresses these challenges by integrating curvature features into an 
iterative optimization process and designing a loss function that includes a curvature consistency 

constraint, thus jointly handling both tasks. 
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In CESINet's Iterative Synergistic Fusion Decoder (ISFD), the curvature features derived from the 

depth map, denoted as 𝐶𝑚𝑎𝑝, are utilized to provide explicit geometric guidance for feature fusion 

and optimization. 

The initial curvature feature map, 𝐶𝑚𝑎𝑝 ∈ 𝑅𝐾×𝐻×𝑊
, can be dynamically computed from the input 

RGB image or from the depth map predicted in early iterations of the network. To use 𝐶𝑚𝑎𝑝 in 

different layers j of the decoder, which have varying feature map resolutions (𝐻𝑗, 𝑊𝑗), it can be 

downsampled via average pooling or stride convolution to 𝐶𝑚𝑎𝑝𝑗
∈ 𝑅𝐾×𝐻𝑗×𝑊𝑗 . 

In each iteration n and at each feature scale j of the ISFD, 𝐶𝑚𝑎𝑝𝑗  can be incorporated into the feature 

stream as follows: 

Feature Concatenation: The (potentially processed) 

𝐶𝑚𝑎𝑝𝑗  is concatenated with the depth and segmentation features fed into the SCSA module: 

 

𝐹𝑑𝑠𝑐𝑠𝑎 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐹𝑑𝑗
(𝑛−1) ,𝑃𝑟𝑜𝑗𝑒𝑐𝑡(𝐶𝑚𝑎𝑝𝑗

)) 

 

𝐹𝑠𝑠𝑐𝑠𝑎 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐹𝑠𝑗
(𝑛−1) ,𝑃𝑟𝑜𝑗𝑒𝑐𝑡(𝐶𝑚𝑎𝑝𝑗

)) 

 

Here, 𝑃𝑟𝑜𝑗𝑒𝑐𝑡(𝐶𝑚𝑎𝑝𝑗
) denotes a small, learnable projection (a 1x1 convolution) applied to 𝐶𝑚𝑎𝑝𝑗  

to align its channel dimension with the task-specific features. 

To further enhance the geometric realism of the prediction results, particularly for depth estimation, 

we introduce a curvature consistency loss term, 𝐿𝑐𝑢𝑟𝑣, into the hybrid loss function. The baseline 

loss function is: 

𝐿ℎ𝑦𝑏𝑟𝑖𝑑 = 𝛼𝐿𝑔𝑒𝑜 +𝛽𝐿𝑠𝑒𝑚 

 

Where 𝐿𝑔𝑒𝑜  encompasses the depth L2 loss, depth gradient L1 loss, and normal vector L1 loss. 𝐿𝑠𝑒𝑚  

is the standard cross-entropy loss. We compute the predicted curvature map 𝐶𝑝𝑟𝑒𝑑_𝑚𝑎𝑝  from the 

network's predicted depth map D, and similarly, the ground truth curvature map 𝐶𝑡𝑟𝑢𝑒_𝑚𝑎𝑝  from the 

ground truth depth map 𝐷∗. 

The curvature loss is then defined as the difference between these two curvature maps: 

 

𝐿𝑐𝑢𝑟𝑣 = ||𝐶𝑝𝑟𝑒𝑑𝑚𝑎𝑝
−𝐶𝑡𝑟𝑢𝑒𝑚𝑎𝑝

||
2
 

 

The final loss function for CESINet becomes: 

 
𝐿𝐶𝐸𝑆𝐼𝑁𝑒𝑡 = 𝛼𝐿𝑔𝑒𝑜 +𝛽𝐿𝑠𝑒𝑚 + 𝛾𝐿𝑐𝑢𝑟𝑣 

 

Here, 𝛾  is a hyperparameter that balances the influence of the curvature constraint term. This 
comprehensive loss function is applied at each or the final few outputs of the ISFD's N iterations. 
This encourages the network to first learn coarse features and then progressively refine details, 
including the geometric consistency of curvature. By directly modulating curvature features within 

the decoder and integrating a curvature-aware loss function, CESINet is compelled to generate 
geometrically more plausible depth maps and semantic segmentation masks. These predictions better 

respect the inherent shape properties of transparent objects. The iterative optimization process allows 
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these curvature constraints to propagate and be reinforced across multiple processing steps, leading 

to synergistic improvements in both depth reconstruction and semantic segmentation tasks. 

4. EXPERIMENTAL SETUP AND EVALUATION 

4.1. Dataset and Experimental Platform 

The experiments were conducted on the ClearPose dataset, which is specifically designed for 

transparent object depth perception and semantic understanding tasks. This dataset contains over 
350,000 RGB-D images captured in real-world environments, providing detailed annotations for 
more than five million transparent object instances, including depth maps, surface normals, object 

categories, masks, and 6D poses. The dataset covers 63 types of transparent objects, such as common 
household items (e.g., glasses, bottles, and plates) as well as laboratory apparatus (e.g., test tubes and 

beakers). 

The scenes exhibit high diversity, encompassing various challenging conditions such as indoor 
environments with heavy occlusions, transparent covers, mixed opaque distractors, internal fluids, 

and non-planar layouts. Such diversity enables a comprehensive evaluation of model robustness under 
realistic and complex optical conditions. The dataset is divided into training and testing subsets to 

assess generalization performance. The training set primarily consists of household and laboratory 
scenes, while the test set includes novel backgrounds, severe occlusions, and adversarial cases with 
opaque interference or complex layering. The schematic illustration of the ClearPose dataset is shown 

in Figure 4. 

 

Figure 4. Representative samples from the ClearPose dataset 

All experiments were implemented on a Ubuntu 22.04 LTS system equipped with an NVIDIA 

GeForce RTX 4090 GPU (24 GB GDDR6X memory) using CUDA 12.1 for GPU acceleration. The 
software environment was managed through Anaconda3, and the models were developed and  trained 
using the PyTorch framework (Python 3.8). 

The Vision Transformer (ViT-B/16) served as the primary backbone. Each training batch contained 
four images. The AdamW optimizer was employed due to its suitability for Transformer-based  

architectures. The network was trained for 150 epochs until convergence. A differential learning rate 
strategy was applied, with an initial rate of 1×10⁻⁵ for fine-tuning the pre-trained ViT backbone and 
3×10⁻⁴ for the decoder to accelerate convergence. A ReduceLROnPlateau scheduler automatically 

reduced the learning rate when the validation loss failed to improve for five consecutive epochs. To 
enhance generalization, online data augmentation techniques such as random horizontal flipping, 

rotation, and random cropping were applied. All input images were resized to 384×384 before being 

fed into the network. 
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4.2. Evaluation Metrics 

In the multi-task learning experiments, three standard quantitative metrics are adopted for the depth 
estimation task—Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Relative Error 

(REL)—to comprehensively measure the overall deviation, average bias, and normalized relative 
error, respectively. For the semantic segmentation task, Intersection over Union (IoU) and mean 

Average Precision (mAP) are employed, ensuring consistency with existing benchmark methods and 

fair comparison across models. 

In the single-task experiments, the same metrics (RMSE, MAE, and REL) are used for evaluating 

depth estimation, while mean IoU (mIoU) and overall pixel accuracy (Acc) are adopted for 
segmentation. The mIoU metric reflects the overlap between the predicted segmentation mask and 

the ground-truth annotation, whereas Acc measures the overall pixel-level classification accuracy. 
Together, these metrics provide a comprehensive evaluation of the model’s performance in both tasks 

under various scenarios. 

4.3. Comparative Results and Analysis 

To thoroughly evaluate the performance of the proposed CESINet in transparent object perception, 

comparative experiments were conducted from two perspectives: (1) multi-task learning frameworks 

and (2) single-task specialized models. 

(1) Comparison with Multi-Task Methods 

Representative multi-task learning frameworks, including ISGNet [18], InvPT, and TaskPrompter, 
were selected for comparison. These models have been widely validated on general-purpose datasets 

such as NYUD-v2 and represent distinct paradigms of task interaction and parameter sharing. 

Experimental results on the ClearPose dataset demonstrate that all baseline methods suffer from 
blurry segmentation boundaries and unstable depth predictions in transparent scenes. In contrast, 

CESINet consistently achieves the best results across all metrics—mIoU for segmentation and RMSE 
for depth estimation—highlighting the advantage of the proposed curvature-enhanced prior and 

synergistic attention mechanism under complex optical conditions. 

For fairness, the results of ISGNet were obtained directly from its official ClearPose benchmark 
report [18]. Since InvPT and TaskPrompter did not provide official results on ClearPose, we 

reproduced them under identical experimental settings as described in Section 4.1 to ensure 

comparability. 

Qualitative results further validate this trend. As illustrated in Table 1, CESINet produces smoother 

and more geometrically consistent depth maps, as well as segmentation masks that align more closely 

with the true object boundaries, particularly in regions involving refraction and reflection. 

Table 1. Quantitative comparison of multi-task learning methods on the ClearPose dataset 

 Model Depth Segmentation 

RMSE↓ MAE↓ REL mAP IoU 

1 InvPT 0.157 0.167 0.172 94.38 88.64 

2 TaskPrompter 0.232 0.215 0.198 95.67 91.39 

3 ISGNet 0.123 0.052 0.068 97.83 92.84 

4 CESINet 0.112 0.050 0.060 98.27 94.33 
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Figure 5. Qualitative comparison of segmentation and depth estimation results among multi-task 

learning methods on the ClearPose dataset 

(2) Comparison with Single-Task Models 

To establish an upper-bound reference for each task, CESINet was further compared with state-of-

the-art single-task models designed specifically for transparent object segmentation and depth 

estimation. 

For semantic segmentation, two representative methods were selected: DeepLabv3+ and SegFormer. 
The former represents a classical convolution–atrous architecture widely used in semantic 
segmentation, while the latter is a Transformer-based lightweight architecture that reflects recent 

advances in segmentation networks. Both models were retrained on ClearPose under identical 
conditions for fair comparison: ViT-B/16 backbone, 384×384 input resolution, batch size of 4,100 

training epochs, AdamW optimizer, differential learning rates (1×10⁻⁵ for the backbone and 3×10⁻⁴ 
for the decoder), and identical data augmentation strategies (random flipping, rotation, and cropping). 
Although the original DeepLabv3+ and SegFormer architectures use ResNet and MiT backbones 

respectively, all models here were unified with ViT-B/16 for consistent evaluation. 

Table 2. Performance comparison of single-task segmentation models 

 Model mIoU ACC 

1 DeepLabv3+ 87.54 85.72 

2 SegFormer 89.62 88.74 

3 CESINet 90.21 89.97 

 

Input RGB DeepLabv3+ SegFormer CESINet GT

 

Figure 6. Qualitative comparison of depth estimation results among single-task models 

For the depth estimation task, the official ClearPose baseline ImplicitDepth and the TransCG 
model—both of which report results under the ClearPose benchmark—were selected as single-task 

reference methods. Their results were obtained from the official evaluations reported in the ClearPose 
paper [5]. Since these metrics were produced under the official ClearPose evaluation protocol, which 
differs from our multi-task experimental setting, they are used here only as upper-bound performance 

references for single-task models. 
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Table 3. Performance comparison of single-task depth estimation models 

 Model RMSE REL MAE 

1 ImplicitDepth 0.133 0.120 0.102 

2 TransCG 0.077 0.065 0.060 

3 CESINet 0.063 0.057 0.055 

 

Input RGB ImplicitDepth TransCG CESINet GT Depth

 

Figure 7. Qualitative comparison of segmentation estimation results among single-task models 

The visualized results further demonstrate the predicted performance in representative transparent 
object scenarios. Compared with existing methods, the proposed model generates smoother and more 

consistent depth maps, while its segmentation boundaries align more precisely with the ground-truth 
contours. These observations validate the effectiveness of the proposed curvature-enhanced prior and 

synergistic attention mechanism in multi-task learning for transparent object perception. 

4.4. Ablation Study 

To evaluate the contribution of each component to the overall performance, an ablation study was 

conducted on the ClearPose test set. Specifically, three model variants were examined: removing the 
curvature feature (w/o Curvature Feature), removing the curvature consistency loss (w/o Curvature 

Loss), and removing the synergistic attention module (w/o Synergistic Attention). 

As shown in Table 4, removing any of these modules leads to a simultaneous degradation in both 
segmentation and depth estimation metrics. In particular, when the curvature feature is removed, the 

IoU/mIoU scores drop significantly while RMSE and REL increase, indicating that curvature priors 
effectively constrain the surface geometry of transparent objects. When the curvature consistency loss 
is removed, the overall accuracy also declines, suggesting that this loss term reinforces the network’s 

ability to maintain geometric coherence. Finally, the removal of the synergistic attention module 
weakens the mutual enhancement between the segmentation and depth estimation tasks, resulting in 

the most consistent yet lower performance across all metrics. 

The complete CESINet configuration achieves the best results on all evaluation metrics, validating 

the complementarity and necessity of the three proposed components. 

Table 4. Ablation study of CESINet components on the ClearPose dataset 

 Model SCSA CI Lcurv Depth Segmentation 

RMSE↓ MAE↓ REL mAP IoU 

1 Baseline    0.123 0.081 86.27 98.21 86.27 

2 Baseline+ SCSA √   0.120 0.078 87.32 98.23 86.77 

3 Baseline+ SCSA+CI √ √  0.110 0.074 88.13 98.30 87.23 

4 CESINet √ √ √ 0.108 0.072 88.65 98.33 87.69 
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5. CONCLUSION 

To address the challenging problem of transparent object perception under monocular vision, this 
paper proposes a novel deep learning framework named CESINet. The core idea of this method 

departs from traditional paradigms that rely solely on the network’s implicit learning of geometric 
features. Instead, it explicitly incorporates surface curvature, which accurately characterizes 3D 

shapes, as a geometric  

prior directly injected into an iterative multi-task perception network. Furthermore, a three-stream 
synergistic attention fusion mechanism is designed to integrate this geometric prior with depth and 

segmentation feature flows, while being guided by a ded icated curvature consistency loss for 

supervision. 

This work verifies the effectiveness of incorporating second-order geometric derivatives into multi-
task perception. Future research may explore the feasibility of introducing higher-order or more 
expressive geometric descriptors as prior knowledge. Moreover, it would be promising to investigate 

how multi-view consistency or temporal cues from video sequences can be leveraged to learn such 
geometric priors in a self-supervised manner, thereby reducing the dependence on high-quality 

ground-truth depth data and enhancing the model’s adaptability to unseen environments. 
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