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ABSTRACT

Transparent objects challenge monocular perception due to refraction, reflection, and weak textures,
which hinder accurate depth estimation and segmentation. To overcome these issues, we propose
CESINet, a curvature-enhanced synergistic attention network for transparent object perception.
CESINet explicitly incorporates surface curvature as a high-order geometric prior to strengthen
spatial representation and introduces a curvature-guided synergistic attention module to enable
effective cross-task feature interaction between depth and segmentation branches. A curvature
consistency loss further enforces geometric coherence across predictions. Experiments on the
ClearPose dataset show that CESINet achieves 94.33% mloU and 98.27% mAP for segmentation,
improving over the multi-task baseline ISGNet by 1.49% and 0.44%, respectively. For depth
estimation, CESINet attains an RMSE of 0.112 and REL of 0.060, reducing errors by 8.9% and
11.8% compared with the baseline. Ablation results demonstrate that removing curvature priors or
attention modules leads to performance drops of up to 3.5% in segmentation and 12% in depth
accuracy, confirming the complementary benefits of explicit geometry and synergistic learning.
Overall, CESINet enhances geometric consistency and boundary sharpness while maintaining
computational efficiency, providing a unified and scalable framework for multi-task transparent object
understanding.
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1. INTRODUCTION

Transparent objects pose persistent challenges for detection, segmentation, and geometric estimation
due to appearance—background coupling induced by refraction and weak texture, leading to unstable
boundaries and ambiguous shape reconstruction. Chen et al. introduced TOM-Net, which formulates
transparent object matting as a refractive-flow estimation problem. Their two-stage network jointly
regresses object masks, attenuation, and refractive fields from a single image, thus incorporating the
coupling between transmission and geometry into an end-to-end learning framework [1].
Subsequently, Sajjan et al. proposed ClearGrasp, which performs synthetic-to-real mixed training to
jointly infer surface normals and depth, effectively correcting missing and distorted depth for
transparent objects and embedding explicit geometric constraints into downstream grasping and 3D
reconstruction [2].
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To enable more challenging segmentation benchmarks, Xie et al. released the Trans10K dataset and
developed the boundary-aware TransLab, emphasizing the significance of boundary cues for
transparent region segmentation [3]. In parallel, Kalra et al. incorporated polarization cues into deep
networks, demonstrating that multimodal physical imaging effectively decouples transparent regions
from their backgrounds [4]. Fang et al. further published the TransCG dataset [5], while Wang et al.
proposed MVTrans, exploiting multi-view information to enhance geometric consistency and
registration quality [6]. In broader 3D vision contexts, Hamdi et al. introduced MVVTN, a multi-view
transformation network that learns viewpoint transformations to substantially improve 3D
understanding, validating the efficacy of multi-view features in complex scene modeling [7].

At the feature modeling level, attention mechanisms provide an effective dynamic reweighting
strategy for scenes characterized by weak textures, strong boundaries, and sparse geometry. Woo et
al. proposed the Convolutional Block Attention Module (CBAM), which has demonstrated the
effectiveness of channel-spatial attention across various vision tasks [8]. In the field of visual
question answering, Lu et al. introduced co-attention mechanisms, enabling bidirectional guidance
between modalities for semantic alignment [9], an idea later extended to visual multi-task learning.
Among these extensions, Yu et al. proposed Multidimensional Collaborative Attention (MCA) [10],
while Cui etal. incorporated collaborative multi-task structures to mitigate negative transfer in unified
frameworks [11]. Similarly, Misra et al. developed the Cross-Stitch Unit, which adaptively balances
shared and task-specific representations through linear combinations across tasks [12], providing a
foundation for synergistic attention mechanisms in transparent object perception. Overall, despite
progress from both the data and modeling perspectives, the exploitation of high-order geometric
priors remains insufficient.

To address the aforementioned limitations, Liu et al. [18] proposed a unified framework for
monocular depth estimation and transparent object segmentation, incorporating an iterative semantic—
geometric fusion mechanism that achieved promising results on both tasks. This work established a
deep coupling between semantic and geometric representations in transparent scenes, significantly
improving perception accuracy. However, it did not explicitly exploit high-order geometric priors
such as surface curvature. As an intrinsic descriptor of local shape, curvature exhibits strong stability
independent of texture and illumination variations. Recent studies have shown that integrating
curvature as an explicit geometric constraint can substantially enhance surface modeling and
perception performance. For instance, SR-CurvANN demonstrated the advantages of curvature-
driven surface reconstruction [13]; Harrison et al. revealed that using curvature as an input feature
markedly improves segmentation and classification performance [14]; and the CFPS method
leveraged curvature-guided point cloud sampling to achieve higher accuracy in classification and
segmentation tasks [15]. More recent research has further confirmed that Gaussian curvature serves
as a strong prior for stereo matching and depth estimation [16]. Nevertheless, most existing methods
for transparent object perception rely primarily on gradient or normal constraints [17], without
explicitly incorporating curvature information to enhance local geometric modeling.

Building upon the framework proposed by Liu et al. [18], this paper further introduces a curvature-
enhanced geometric prior and proposes an improved method for transparent object perception. The
main contributions of this work are summarized as follows:

(1) We propose a novel approach that explicitly incorporates surface curvature as a high-order
geometric prior directly into a deep neural network, enabling the model to exploit curvature-aware

geometric cues during learning.

(2) We design a curvature-enhanced synergistic attention mechanism that facilitates efficient
geometric information exchange between multiple tasks, thereby improving cross-task feature

interaction and semantic consistency.

(3) We introduce a curvature consistency loss (L.,,,) into a hybrid loss formulation, ensuring that
predictions not only approximate ground truthat the pixel level but also maintain structural coherence
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in three-dimensional geometry. This design produces sharper segmentation boundaries and more
accurate depth estimation results.

2. PROPOSED METHOD

This paper proposes a Curvature-Enhanced Synergistic Iterative Network (CESINet), an end -to-end
multi-task learning framework designed to simultaneously address transparent object segmentation
and depth estimation. Unlike existing methods, CESINet explicitly integrates curvature-derived
geometric priors and employs an iterative decoding mechanism toachieve deep cross-task interaction.
By introducing geometric constraints between the segmentation and depth branches, CESINet
effectively alleviates the challenges of boundary ambiguity and depth inconsistency in transparent
regions, thereby achieving synergistic optimization of both tasks.

2.1. Overall Framework

As illustrated in Figure 1, CESINet consists of four main components: an encoder, parallel feature
streams for segmentation and depth, a curvature prior branch, and an iterative decoder. The input
RGB image is first processed by a Vision Transformer (ViT) encoder toextract multi-scale contextual
features. Then, two task-specific feature streams are constructed to learn representations for
segmentation and depth estimation, respectively. Meanwhile, curvature features computed from the
depth map serve as explicit geometric priors, which are injected into the decoding process to enhance
3D structural reasoning. The iterative decoder progressively fuses segmentation, depth, and curvature
features across multiple scales, refining predictions through several iterations to produce both a
semantic segmentation mask and a continuous depth map. This unified design enables CESINet to
perform geometry-constrained multi-task modeling within a single framework.
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Figure 1. Overall architecture of the proposed CESINet framework
2.1.1. Backbone Network Module

CESINet adopts the Vision Transformer (ViT) as its backbone feature extraction network. Originally
proposed by Dosovitskiy et al. [19], ViT divides the input image into fixed -size patches, flattens each
patch into a vector, and processes the resulting sequence through a standard Transformer encoder for
global representation learning. Compared with conventional Convolutional Neural Networks (CNNs),
which are limited by local receptive fields, the Transformer architecture leverages self-attention
mechanisms to capture long-range dependencies across image regions. This enables ViT to better
model complex structures and contextual relationships, which is particularly beneficial in transparent
object perception, where scenes often exhibit blurred textures, weak edges, and strong contextual
correlations. Consequently, ViT serves as a robust backbone that provides rich multi-scale contextual
features for both segmentation and depth estimation tasks in CESINet.
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2.1.2. Backbone Network Module

Since the Vision Transformer encoder outputs a one-dimensional sequence of tokens without explicit
spatial structure, it is not directly suitable for dense prediction tasks. To address this issue, CESINet
introduces a Reassemble Module, which reconstructs the spatial layout of token embeddings and
transforms them into two-dimensional feature maps. Following the methodology proposed in DPT
[20], this module establishes task-specific multi-scale feature pyramids for both depth estimation and
semantic segmentation.

Specifically, the reassembly process involves two main steps:
(1) Feature Reshaping:

For the token sequences output from each selected layer of the encoder, the module reshapes them
into two-dimensional feature maps with spatial dimensions (h, w), thereby restoring the spatial
correspondence lost during the tokenization process.

(2) Parallel Pyramid Construction:

The module then constructs two parallel multi-scale feature pyramids forthe subsequent tasks—depth
estimation and semantic segmentation. The reshaped feature maps are passed through a projection

layer (typically implemented as a 1L convolution) to generate two independent feature branches:

Py =F41,F4,Fg3, Fau
Po=F; ,Fy, F3, Fy

In both pyramids, the feature map resolution decreases progressively while the channel dimension
increases, forming a coarse-to-fine hierarchy. This design provides rich multi-scale contextual
information and ensures that both tasks receive well-aligned and semantically consistent feature

representations for the subsequent iterative decoding process.
2.1.2. Curvature Synergistic Ilterative Decoder

The Curvature Synergistic Iterative Decoder (CSID) is designed to progressively refine the
predictions generated by the encoder through an iterative optimization and collaborative fusion
strategy. In complex transparent object scenes, single-pass decoding frameworks often struggle to
achieve structurally consistent results. For example, although TransDepth [21] introduces global
contextual modeling via Transformers, its one-time fusion strategy still leads to depth misalignment
and blurred boundaries around reflective or refractive regions. To overcome this limitation, CESINet
employs a multi-scale, coarse-to-fine decoding strategy with N iterative refinements.

Each iteration in CSID consists of four decoding stages, gradually upsampling features from the
lowest to the highest resolution. The key mechanism enabling effective fusion is the Curvature-
Integrated Synergistic Channel-Spatial Attention (CI-SCSA) Fusion, which operates at every
decoding scale. The iterative design ensures that each stage benefits from both the historical
information of previous iterations and the current geometric features, thereby refining fine-grained
structures such as object edges and transparent boundaries.

The iterative optimization process includes two major components:
Iterative Refinement Strategy:

The decoder does not complete prediction in a single forward pass but repeats the process N times.
During the n-th iteration, it receives not only the reassembled features from the encoder but also the
refined features from the (n—1)-th iteration. A lightweight Gated Unit regulates the integration
between historical and current information, enforcing a gradual transition from coarse to fine
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representations. This iterative refinement enables the network to focus on detailed regions
progressively, leading to sharper segmentation and smoother depth surfaces.

Synergistic Fusion Mechanism:

At each scale of every iteration, a Synergistic Channel-Spatial Attention (SCSA) module replaces
the conventional feature concatenation operation [22]. The SCSA module performs dynamic
reweighting across spatial and channel dimensions to facilitate cross-task information exchange. It
takes three inputs: (1) the depth feature map Fj;; (2) the segmentation feature map F;; and (3) the
projected curvature map Cpqp.Through spatial-channel attention computation, SCSA adaptively
assesses the importance of each feature source and fuses them accordingly. The segmentation branch
provides semantic region cues that guide smooth surface reconstruction in the depth branch, while
the curvature map contributes explicit geometric priors that enhance boundary sharpness and
geometric consistency. Consequently, CSID achieves deep synergy among semantic, geometric, and
curvature-aware representations, leading to more accurate and structurally coherent predictions.

3. CURVATURE-GUIDED GEOMETRIC MODELING

3.1. Curvature Feature Extraction from Depth Maps

Transparent objects often lack distinctive texture cues; thus, accurate perception in terms of depth
estimation and semantic segmentation largely dependsongeometric information, such as object shape
and surface curvature. Traditional approaches typically rely on dense point cloud data to compute
curvature; however, in monocular depth estimation scenarios, curvature features must be extracted
directly from the predicted or intermediate depth maps.

During depth map acquisition, the raw sensor outputs frequently contain noise, missing values, and
out-of-range measurements, which can significantly degrade geometric reliability. Therefore, a series
of preprocessing steps are applied to enhance dataquality before curvature computation. First, invalid
or missing depthvalues are detected and corrected toavoid numerical bias in subsequent calculations.
Then, median filtering and bilateral filtering are performed to remove local noise while preserving
critical edge structures. For depth values exceeding the sensor’s valid measurement range, clipping
or masking operations are applied to constrain them within a physically reasonable domain.
Subsequently, the preprocessed depth data are normalized to a predefined range to ensure
compatibility with standard image processing pipelines. Finally, the normalized depth values are
mapped tograyscale or pseudo-color images, providing an intuitive visualization of depth information.
The overall preprocessing workflow is illustrated in Figure 2.
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Figure 2. Preprocessing pipeline for raw depth map denoising and normalization

We propose a method to derive curvature features directly from two-dimensional depth maps, where
the depth map can be regarded as a height field z=D(x, y). The curvature of a surface at a given point
describes the degree of local bending of that surface. The two primary curvature measures—mean
curvature and Gaussian curvature—can be computed from the first- and second-order partial

derivatives of the depth function D with respect to the image coordinates x and .

By treating the depth map as a Monge patch, represented as (X, y, D (X, y)), the mean curvature H,
and Gaussian curvature K. of the surface can be calculated using the following formulations:
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Considering that the two curvature measures described above are sensitive to noise, an additional and
more robust curvature descriptor—the Laplacian operator of the depth map—is introduced:

V?Z = Zy+Zy,

The Laplacian operator, V*Z, provides a scalar value at each pixel, indicating the local convexity or
concavity of the surface at that point. By concatenating the three curvature representations described
above—mean curvature, Gaussian curvature, and Laplacian curvature—a multi-channel curvature
featuremap, Ciqp € R¥*HXW ‘s constructed. This feature map is subsequently injected into different
stages of the network decoder, providing explicit geometric cues about the shape of transparent
objects. It assists segmentation by sharpening curved boundaries and improves depth estimation by
enhancing geometric consistency across the reconstructed surface.
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Figure 3. Visualization of curvature feature maps derived from depth maps

3.2. Curvature-Constrained Multi-Task Iterative Optimization in CESINet

Accurate depth reconstruction and semantic segmentation of transparent objects are tightly coupled
tasks. Precise object contours provide crucial boundary constraints for depth estimation, while
accurate depth information, in turn, helps differentiate objects from the background, thereby refining
segmentation results. However, effectively leveraging this inter-task complementarity and
incorporating more refined geometric priors remains a key challenge in multi-task learning. This
section details how CESINet addresses these challenges by integrating curvature features into an
iterative optimization process and designing a loss function that includes a curvature consistency
constraint, thus jointly handling both tasks.
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In CESINet's Iterative Synergistic Fusion Decoder (ISFD), the curvature features derived from the
depth map, denoted as Cpqp, are utilized to provide explicit geometric guidance for feature fusion
and optimization.

The initial curvature feature map, Cpqp € R¥HXW " can be dynamically computed from the input

RGB image or from the depth map predicted in early iterations of the network. To use Cpgp in
different layers j of the decoder, which have varying feature map resolutions (H;, Wj), it can be

. . . . KXH; XW;
downsampled via average pooling or stride convolution to Cmapj € R™™TT

In each iteration nand at each feature scale j of the ISFD, Cmap j can be incorporated into the feature
stream as follows:

Feature Concatenation: The (potentially processed)

Cnap i is concatenated with the depth and segmentation features fed into the SCSA module:

Fao .00 = Concat(Fdj(."_ D,Project(Cmapj))

Fo = Concat(FS](.”_l),Project(Cmapj))
Here, Project(Cnap,) denotesa small, learnable projection (a 1x1 convolution) applied to Cmap
to align its channel dimension with the task-specific features.

To further enhance the geometric realism of the prediction results, particularly for depth estimation,

we introduce a curvature consistency loss term, L, into the hybrid loss function. The baseline
loss function is:

Lhybrid = aLgeo + :BLsem

Where Lg., encompasses the depthL2 loss, depthgradient L1 loss, and normal vector L1 loss. Ly,
is the standard cross-entropy loss. We compute the predicted curvature map Cpreq map from the
network's predicted depth map D, and similarly, the ground truth curvature map Cirye map from the
ground truth depth map D*.

The curvature loss is then defined as the difference between these two curvature maps:

curv — |Cpredmap - Ctruemap

The final loss function for CESINet becomes:

LCESINet = aLgeo + ﬁLsem + VL curv

Here, vy is a hyperparameter that balances the influence of the curvature constraint term. This
comprehensive loss function is applied at each or the final few outputs of the ISFD's N iterations.
This encourages the network to first learn coarse features and then progressively refine details,
including the geometric consistency of curvature. By directly modulating curvature features within
the decoder and integrating a curvature-aware loss function, CESINet is compelled to generate
geometrically more plausible depth maps and semantic segmentation masks. These predictions better
respect the inherent shape properties of transparent objects. The iterative optimization process allows
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these curvature constraints to propagate and be reinforced across multiple processing steps, leading
to synergistic improvements in both depth reconstruction and semantic segmentation tasks.

4. EXPERIMENTAL SETUP AND EVALUATION
4.1. Dataset and Experimental Platform

The experiments were conducted on the ClearPose dataset, which is specifically designed for
transparent object depth perception and semantic understanding tasks. This dataset contains over
350,000 RGB-D images captured in real-world environments, providing detailed annotations for
more than five million transparent object instances, including depth maps, surface normals, object
categories, masks, and 6D poses. The dataset covers 63 types of transparent objects, such as common
household items (e.g., glasses, bottles, and plates) as well as laboratory apparatus (e.g., test tubes and
beakers).

The scenes exhibit high diversity, encompassing various challenging conditions such as indoor
environments with heavy occlusions, transparent covers, mixed opaque distractors, internal fluids,
and non-planar layouts. Such diversity enables a comprehensive evaluation of model robustness under
realistic and complex optical conditions. The dataset is divided into training and testing subsets to
assess generalization performance. The training set primarily consists of household and laboratory
scenes, while the test set includes novel backgrounds, severe occlusions, and adversarial cases with
opaque interference or complex layering. The schematic illustration of the ClearPose dataset is shown

in Figure 4.
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true _true ane_depth

Figure 4. Representative samples from the ClearPose dataset

All experiments were implemented on a Ubuntu 22.04 LTS system equipped with an NVIDIA
GeForce RTX 4090 GPU (24 GB GDDR6X memory) using CUDA 12.1 for GPU acceleration. The
software environment was managed through Anaconda3, and the models were developed and trained
using the PyTorch framework (Python 3.8).

The Vision Transformer (ViT-B/16) served as the primary backbone. Each training batch contained
four images. The AdamW optimizer was employed due to its suitability for Transformer-based
architectures. The network was trained for 150 epochs until convergence. A differential learning rate
strategy was applied, with an initial rate of 1x10~° for fine-tuning the pre-trained ViT backbone and
3x10™ for the decoder to accelerate convergence. A ReduceLROnPlateau scheduler automatically
reduced the learning rate when the validation loss failed to improve for five consecutive epochs. To
enhance generalization, online data augmentation techniques such as random horizontal flipping,
rotation, and random cropping were applied. All input images were resized to 384 X384 before being
fed into the network.
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4.2. Evaluation Metrics

In the multi-task learning experiments, three standard quantitative metrics are adopted for the depth
estimation task—Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Relative Error
(REL)—to comprehensively measure the overall deviation, average bias, and normalized relative
error, respectively. For the semantic segmentation task, Intersection over Union (loU) and mean
Average Precision (mAP) are employed, ensuring consistency with existing benchmark methods and
fair comparison across models.

In the single-task experiments, the same metrics (RMSE, MAE, and REL) are used for evaluating
depth estimation, while mean loU (mloU) and overall pixel accuracy (Acc) are adopted for
segmentation. The mloU metric reflects the overlap between the predicted segmentation mask and
the ground-truth annotation, whereas Acc measures the overall pixel-level classification accuracy.
Together, these metrics provide a comprehensive evaluation of the model’s performance in both tasks
under various scenarios.

4.3. Comparative Results and Analysis

To thoroughly evaluate the performance of the proposed CESINet in transparent object perception,
comparative experiments were conducted from two perspectives: (1) multi-task learning frameworks
and (2) single-task specialized models.

(1) Comparison with Multi-Task Methods

Representative multi-task learning frameworks, including ISGNet [18], InvPT, and TaskPrompter,
were selected for comparison. These models have been widely validated on general-purpose datasets

such as NYUD-v2 and represent distinct paradigms of task interaction and parameter sharing.

Experimental results on the ClearPose dataset demonstrate that all baseline methods suffer from
blurry segmentation boundaries and unstable depth predictions in transparent scenes. In contrast,
CESINet consistently achieves the best results across all metrics—mloU for segmentation and RMSE
for depth estimation—nhighlighting the advantage of the proposed curvature-enhanced prior and
synergistic attention mechanism under complex optical conditions.

For fairness, the results of ISGNet were obtained directly from its official ClearPose benchmark
report [18]. Since InvPT and TaskPrompter did not provide official results on ClearPose, we
reproduced them under identical experimental settings as described in Section 4.1 to ensure
comparability.

Qualitative results further validate this trend. As illustrated in Table 1, CESINet produces smoother
and more geometrically consistent depthmaps, as well as segmentation masks that align more closely
with the true object boundaries, particularly in regions involving refraction and reflection.

Table 1. Quantitative comparison of multi-task learning methods on the ClearPose dataset

Model Depth Segmentation
RMSE| MAE| REL mAP loU
1 InvPT 0.157 0.167 0.172 94.38 88.64
2 TaskPrompter 0.232 0.215 0.198 95.67 91.39
3 ISGNet 0.123 0.052 0.068 97.83 92.84
4 CESINet 0.112 0.050 0.060 98.27 94.33
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Figure 5. Qualitative comparison of segmentation and depth estimation results among multi-task
learning methods on the ClearPose dataset

(2) Comparison with Single-Task Models

To establish an upper-bound reference for each task, CESINet was further compared with state-of-
the-art single-task models designed specifically for transparent object segmentation and depth
estimation.

For semantic segmentation, two representative methods were selected: DeepLabv3+ and SegFormer.
The former represents a classical convolution—atrous architecture widely used in semantic
segmentation, while the latter is a Transformer-based lightweight architecture that reflects recent
advances in segmentation networks. Both models were retrained on ClearPose under identical
conditions for fair comparison: ViT-B/16 backbone, 384>384 input resolution, batch size of 4,100
training epochs, AdamW optimizer, differential learning rates (1x<10~* for the backbone and 310
for the decoder), and identical dataaugmentation strategies (random flipping, rotation, and cropping).
Although the original DeepLabv3+ and SegFormer architectures use ResNet and MiT backbones

respectively, all models here were unified with ViT-B/16 for consistent evaluation.
Table 2. Performance comparison of single-task segmentation models

Model mloU ACC
1 DeepLabv3+ 87.54 85.72
2 SegFormer 89.62 88.74
3 CESINet 90.21 89.97

Input RGB DeeplLabv3+ SegFormer CESINet GT

Figure 6. Qualitative comparison of depth estimation results among single-task models

For the depth estimation task, the official ClearPose baseline ImplicitDepth and the TransCG
model—Dboth of which report results under the ClearPose benchmark—were selected as single-task
reference methods. Their results were obtained from the official evaluations reported in the ClearPose
paper [5]. Since these metrics were produced under the official ClearPose evaluation protocol, which
differsfrom our multi-task experimental setting, they are used here only as upper-bound performance
references for single-task models.
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Table 3. Performance comparison of single-task depth estimation models

Model RMSE REL MAE
1 ImplicitDepth 0.133 0.120 0.102
2 TransCG 0.077 0.065 0.060
3 CESINet 0.063 0.057 0.055
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Figure 7. Qualitative comparison of segmentation estimation results among single-task models

The visualized results further demonstrate the predicted performance in representative transparent
object scenarios. Compared with existing methods, the proposed model generates smoother and more
consistent depth maps, while its segmentation boundaries align more precisely with the ground-truth
contours. These observations validate the effectiveness of the proposed curvature-enhanced prior and
synergistic attention mechanism in multi-task learning for transparent object perception.

4.4. Ablation Study

To evaluate the contribution of each component to the overall performance, an ablation study was
conducted on the ClearPose test set. Specifically, three model variants were examined: removing the
curvature feature (w/o Curvature Feature), removing the curvature consistency loss (w/o Curvature
Loss), and removing the synergistic attention module (w/o Synergistic Attention).

As shown in Table 4, removing any of these modules leads to a simultaneous degradation in both
segmentation and depth estimation metrics. In particular, when the curvature feature is removed, the
loU/mloU scores drop significantly while RMSE and REL increase, indicating that curvature priors
effectively constrain the surface geometry of transparent objects. When the curvature consistency loss
is removed, the overall accuracy also declines, suggesting that this loss term reinforces the network’s
ability to maintain geometric coherence. Finally, the removal of the synergistic attention module
weakens the mutual enhancement between the segmentation and depth estimation tasks, resulting in

the most consistent yet lower performance across all metrics.

The complete CESINet configuration achieves the best results on all evaluation metrics, validating
the complementarity and necessity of the three proposed components.

Table 4. Ablation study of CESINet components on the ClearPose dataset

Model SCSA CI  Lcurv Depth Segmentation
RMSE| MAE| REL mAP IloU
1 Baseline 0.123 = 0.081 86.27 9821 86.27
2  Baseline+ SCSA \ 0.120 0.078 87.32 98.23 86.77
3  Baseline+ SCSA+CI \ \ 0.110 = 0.074 88.13 98.30 87.23
4 CESINet \ \ \ 0.108 = 0.072 88.65 98.33 87.69
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5. CONCLUSION

To address the challenging problem of transparent object perception under monocular vision, this
paper proposes a novel deep learning framework named CESINet. The core idea of this method
departs from traditional paradigms that rely solely on the network’s implicit learning of geometric
features. Instead, it explicitly incorporates surface curvature, which accurately characterizes 3D
shapes, as a geometric

prior directly injected into an iterative multi-task perception network. Furthermore, a three-stream
synergistic attention fusion mechanism is designed to integrate this geometric prior with depth and
segmentation feature flows, while being guided by a dedicated curvature consistency loss for
supervision.

This work verifies the effectiveness of incorporating second-order geometric derivatives into multi-
task perception. Future research may explore the feasibility of introducing higher-order or more
expressive geometric descriptors as prior knowledge. Moreover, it would be promising to investigate
how multi-view consistency or temporal cues from video sequences can be leveraged to learn such
geometric priors in a self-supervised manner, thereby reducing the dependence on high-quality
ground-truth depth data and enhancing the model’s adaptability to unseen environments.
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