WE

Wi ick
_ ISSN: 3005-9682 (Print), ISSN: 3005-7140 (Online) | Volume 8, Number 1, Year 2026

— DOI: https://doi.org/10.62051/ijcsit.v8n1.02
Journal homepage: https://wepub.org/index.php/IJCSIT/index

I

International Journal of Computer Science and Information Technology

Research on Integrating Artificial Intelligence in User Feedback
Loops for Dynamically Adjusting Video Game Difficulty

Hongyu Wu

United World College of South East Asia, East Campus, Singapore

ABSTRACT

Dynamic Difficulty Adjustment (DDA) remains one of the most promising mechanisms for optimizing
player engagement in interactive digital entertainment. This research presents an end-to-end
framework for integrating artificial intelligence into the player feedback loop to adjust game difficulty
dynamically. Current similar models of DDA are usually requiring manual setup for controlling the in-
game resources, making the capital cost high to deploy such a model. In this research, a functional
prototype is deployed and tested in “Gulltovia”, a mobile card game launched on Appstore. We
design a data pipeline that parses raw player event logs from the game, computes session-level
metrics such as fail count, adjusted playtime, and button interaction frequency, and uses these as
inputs to a hybrid classification system that combines rule-based thresholds with a machine learning
model. The trained model is exported to ONNX and executed inside the Unity engine, enabling real-
time predictions and conservative difficulty adjustments based on probability confidence.

KEYWORDS

Dynamic Difficulty Adjustment; Player Modeling; Implicit Feedback; Machine Learning; Unity
Integration

1. INTRODUCTION

Player experience is highly sensitive to difficulty calibration. If the challenge level is too low, skilled
players quickly become bored, whereas if it is too high, novice players may become frustrated and
abandon the game altogether. Game designers have long attempted to find a “sweet spot” of difficulty
that induces what Csikszentmihalyi calls the flow state [1]: a psychological zone where challenge and
skill are in balance.

Traditional approaches to balancing difficulty rely on static tuning and playtesting, which cannot
adaptto thediverse distribution of player abilities in live service games. This gap has led to increasing
interest in Dynamic Difficulty Adjustment (DDA), in which the game system measures player

performance in real time and adjusts challenge parameters to maintain engagement.

Prior research has investigated DDA through rule-based systems and reinforcement learning
controllers. For instance, Hunicke [2] formalized the idea of “drama management” in games, and
Zoeller [3] demonstrated the use of telemetry data to identify underperforming player cohorts.
However, many of these approaches are either too unfocused, resulting in perceptible difficulty
swings, or too computationally expensive to deploy in production. Our work aims to strike a balance
by using lightweight feature extraction, interpretable models, and a conservative control policy that
preserves fairness.

This research reports on the development, implementation, and evaluation of an Al-driven DDA
pipeline. The contributions of this work are threefold: (1) a reproducible data processing pipeline for

Content fromthis work may be used under the termsof CC BY-NC 4.0 licence (https://creativecommons.org/licenses/by-nc/4.0/).
cawemm Published by Warwick Evans Publishing.

computing per-session skill indicators from raw eventlogs, (2) a 1D Convolution neural network with
calibrated probability outputs that predict player skill levels, and (3) a feedback controller that
integrates with the Unity game engine to adjust difficulty parameters in real time under strict stability
constraints.

2. METHODOLOGY
2.1. Dataset and Preprocessing

The dataset used in this research (Figure 1) comprises a CSV file with 59 columns of event types,
including #user_id (unique user id for each downloaded player), #event_name (coding name forevery
interaction with the game), #event_time (the time stamp that certain event happens in GMT+0), and,
where applicable, #score or #final_score (game score).

The first step is to sort the dataset by #user_id and timestamp to reconstruct chronological player
histories. Sessions are defined as contiguous intervals between #game_start (when the game opens)
and #game_end (when the user quits theapp) events, with any idle gap greater than 30 minutes treated

as a session boundary.

#user_id #event_name #event_time #account_id #distinct_id #server_time #kafka_offset #uuid #dw_create_time #dw_update_time

00089CB7- C1275F9A-
5 2025-07-16 8597-44C8- 2025-07-17 515C-4D5C- 2025-07-17
3
1395325891369799680 ta_app_install 20:46:54.388 NaN 48— 08:46:56.269 51118016318 BASE- 08:46:58.925 NaN

F2E8BBOA737B F727539078E2

00089CB7- BC59CC35-
a - n 2025-07-16 8597-44C8- 2025-07-17 659D-4554— 2025-07-17
1395325891369799680 first_active 20:46:55.415 AAAB- 08:46:56.272 51118016307 B368- 08:46:57.431

F2E8BB9YAT737B CBC333414384

00089CB7- 76846DES-
; _ 2025-07-16 8597-44C8- 2025-07-17 0582-4CD5- 2025-07-17
Hesiszrsrl ey app_start 54 46.55.418 AAdB- 08:46:56.272 Sy 8679- 08:46:57.216

F2EBBBOA7378B 02F2ED250F87

00089CB7- 1620211D—
025-07— 97-44CB- 2025-07-17 660-4FB1- 2025-07—
1395325891369799680 app_launch ,,20’,32,5%7412 a 8697 ﬁi:f 05945‘5?;7272 smieoi6a07 000 g;ﬂf O;jg,f? 511;

F2EBBB9A7378B DFAT7393EE62

00089CB7- 79DE5A45-
2025-07-16 86597-44C8~ 20256-07-17 51118016307 F23A-4CF2- 2025-07-17
20:46:65.611 AA4B- 08:46:56.272 : 8ADB- 08:46:57.196
F2E8BB9A7378B 0AE6227C48FB

1395325891369799680 ta_app_start

Figure 1. Raw Event Table

Mathematically, if t; (#game_start) and t, (#game_end) denote the time stamps of the start and end
of the session respectively, and t;; (where the app quits systematically, not in sleeping), t;; (game
begins systematically, not when user open the app) denote pairs of app quit and launch times during
the session, the true playtime is computed as

Tpray — (te —) — D (tg — 1)
=1

Where n is the number of quit to launch intervals. This adjustment ensures that background time does
not artificially inflate playtime. The examined table is below (Figure 2).

Sample Tag
MostRecent Expert 55

Normal 131

Novice 353
dtype: int64

user_id Sample EndTime Ending_ID Fail_Times Time_For_Winning Button_Click_Time Tag
1361302297660968960 MostRecent 2025-07-23 22:04:15.540 4.0 28.374 14 Novice
1361846193839190016 MostRecent 2025-04-27 00:48:33.405 329.247 44 Novice
1364358567955623936 MostRecent 2025-04-22 22:01:29.109 156.963 25 Normal
1365414056860610561 MostRecent 2025-05-14 20:12:00.966 . 063 17 Novice
1366585318119096320 MostRecent 2025-04-29 11:10:16.633 114 18 Novice
1366733006512943104 MostRecent 2025-04-29 11:10:40.425 .282 Expert
1366736904032112640 MostRecent 2025-05-14 23:07:07.426 .248 Normal
1370482912201281536 MostRecent 2025-85-13 20:46:38.766 <729 Novice
1372740579162591232 MostRecent 2025-05-15 10:02:51.530 .052 Normal
1374662016622432256 MostRecent 2025-85-21 08:16:49.538 .922 Normal
1374693983921459200 MostRecent 2025-05-21 17:58:32.294 .831 Novice
1374704434566680576 MostRecent 2025-05-21 02:58:05.347 279 Expert
1374705672251355136 MostRecent 2025-05-21 21:17:23.142 .114 Novice
1374880788696358912 MostRecent 2025-05-21 23:10:40.339 .468 Novice
1375172639127007232 MostRecent 2025-85-22 18:06:09.905 .512 Expert
1375499142989713408 MostRecent 2025-87-08 13:25:25.003 .461 Normal
1375766666192924672 MostRecent 2025-07-19 16:01:01.178 .768 Normal
1375943325797941248 MostRecent 2025-07-28 20:02:34.649 .232 Expert
1375952208998256640 MostRecent 2025-07-15 18:27:48.297 .139 Novice
1375955126732296192 MostRecent 2025-05-24 23:05:03.258 .505 Novice
1376564090943598593 MostRecent 2025-05-26 14:15:57.675 .376 Normal
1376802087219777536 MostRecent 2025-05-26 18:04:59.549 .551 Novice
1377003489082765312 MostRecent 2025-05-27 07:21:24.165 .869 Novice
1377040506428608518 MostRecent 2025-05-27 ©9:53:14.701 .182 Novice
1377046573694865408 MostRecent 2025-85-27 11:07:41.496 .845 Normal
1377146467294146560 MostRecent 2025-85-28 00:36:37.308 .454 Novice
1377150282437263360 MostRecent 2025-85-27 17:12:02.919 .866 Novice
1377177287241252864 MostRecent 2025-85-27 17:53:10.023
1377186927253417984 MostRecent 2025-06-07 23:31:42.856
1377201215753990144 MostRecent 2025-05-27 20:35:11.611

.580 Expert
375.176 Novice
96.572 Normal

ONWNNORWWUOUWANODOHROWWOWOOROUUWNN
9090909000900 d
HFOO OO RRPNOHROOROOOATRIND LW

Figure 2. Processed Event Table

2.2. Feature Engineering

For each session, we compute three main metrics: (1) #Fail_Times, the number of failed endings
(where #ending_id is in the failure set {1,2,3}); (2) #Time_For_Winning, equal to Tp;,, when the
session ends with a win; and (3) #Button_Click_Time, #counting card_select events as a proxy for
interaction intensity. To smooth noise, especially for players with very short sessions, we apply
exponential weighting across the most recent k sessions so that more recent performance has higher
influence.

2.3. Classification Strategy

The baseline classifier uses deterministic rules: if Tpq, is smaller than 150 seconds, and
#Button_Click_Time less than 15, the player is labeled Expert. If these thresholds are slightly
exceeded but still within defined limits (<2 fails, <400 seconds, <30 clicks), the label is Normal. All
other cases are classified as Novice. This boundary is set by the game studio who produced this
mobile game —with us being the major programmer and designer— and as a result of the data
analysis of over 2000 players' statistics.

10

2.4. Model Training

Convl1x1Model(nn.Module):

of it (self):

super(Conv1x1Model, self). init ()

self.convix1 = nn.Conv2d(3, 64, kemel size=1) #Cony

self.fc = nn.Linear(64, 3)

forward(self, x):
x = self.conv1x1(x) #multiple I
X = x.view(x.size(0), -1)

x = self . fc(x)

returm x

Figure 3. Initial Model (Part)

MLP(nn.Module):
__init__ (self, in_dim=3, hidden1=64, hidden2=32, out dim=3):
super().__mit__ ()
self.net = nn.Sequential(
nn.Linear(in_dim, hiddenl),
nn.ReL.U(),
nn. BatchNorm1d(hiddenl),
nn.Dropout(0.15),
nn Linear(hiddenl, hidden2),
nn.ReLU(),
nn. BatchNorm1d(hidden2),
nn.Dropout(0.10),
nn Linear(hidden2, out_dim)
)
forward(self, x):

return self.net(x)

model = MLP(in_dim=3, out_dim=num_classes)

Figure 4. Final Model (Part)

The model architecture was selected based on its ability to efficiently capture temporal dependencies
between player metrics while remaining lightweight for mobile deployment. A one-dimensional
convolutional network (Conv1D) was chosen because it is well-suited to sequential data with limited

11

feature dimensions, such as session-based gameplay telemetry. Unlike traditional multilayer
perceptrons that treat inputs as independent, the Conv1D layer can detect localized patterns in player
behavior—such as repeated fail-recover cycles—through its kernel sliding operation, allowing the
network to learn temporal correlations between fail times, completion durations, and interaction
frequencies. This design follows prior work demonstrating that compact convolutional architectures
outperform fully connected ones for low-dimensional sequential tasks [4].

The specific hyperparameters were selected to balance generalization and computational efficiency.
Hidden layers of 64 and 32 neurons provide sufficient representational capacity without inflating
inference cost. Dropout rates of 0.15 and 0.10, following Srivastava et al. (2014) [5], mitigate
overfitting by stochastically deactivating neurons during training, while Batch Normalization [5: loffe
& Szegedy, 2015] stabilizes gradient flow and accelerates convergence.

Rectified Linear Units (ReLU) were employed for their sparsity and efficiency on mobile processors.
The model was optimized using the Adam algorithm [7] with a learning rate of 1x1073, which
provides adaptive gradient scaling and fast convergence for small datasets. Compared to a simple
MLP baseline, the ConvliD model demonstrated faster convergence and superior accuracy,
confirming that capturing local sequential dependencies is beneficial even in compact behavioral
datasets.

2.5. Integration with Unity

The trained model is exported to ONNX format for deployment inside Unity. At runtime, each
completed session triggers feature computation, which is then passed to the ONNX model through
Unity’s Barracuda inference engine. The predicted probability vector p = [Provices Prormals pexpert]
is used to update a rolling player profile. Difficulty parameters, such as enemy health multiplier and
resource drop rate, are thenadjusted if the maximum class probability exceeds a confidence threshold.
Adjustments are rate-limited to a maximum change of A per session and can be rolled back if
engagement metrics decline.

3. RESULTS AND DISCUSSION
3.1. Offline Evaluation

Training loss decreased from 0.64 to 0.20 within 100 epochs, converging around epoch 35, indicating
that the model quickly reached a stable minimum. The final test accuracy is 97.65%. The confusion
matrix, presented in Figure 7, shows strong diagonal dominance, with only two Normal sessions
misclassified as Expert, suggesting a slight optimism bias but no systematic underestimation of player
difficulty. Recall remains above 0.93 for all classes, confirming that the model does not under-

represent novice players.

12

Epoch 10/10@ Loss
Epoch 20/10@ Loss
Epoch 30/100 Loss
Epoch 40/10@ Loss
Epoch 50/100 Loss
Epoch 60/100 Loss
Epoch 70/10@ Loss
Epoch 80/100 Loss
Epoch 90/10@ Loss
Epoch 100/10@ Loss
Test Acc: 97.65%
precision recall fl-score support

.6484
4774
.3827
.2732
2477
.2220
.2228
2162
.2103
.2077

[T IS S S B S S

Expert 0.89 . 0.94 17
Normal 1.00 5 0.97 30
Novice 1.00 5 1 38

accuracy 0. 85
macro avg 0.96 - 0. 85
weighted avg 0.98 - 0 85

Figure 5. Training Table

Loss over Time Confusion Matrix

1.2
Expert 17 0 0

104

0.8

Training Loss

2
?r'; Normal A 2
=
0.6
0.4 4
Novice 0
0.2 1
(I] Zb 4|0 6I0 8|() 160 EXp'ert Narlma\ Novice
Epoch Predicted label
Figure 6. Loss Over Time Figure 7. Confusion Matrix

The distribution of predicted skill classes reveals that 62% of players fall into the Novice category,
23% into Normal, and 10% into Expert. This skew suggests that most players face relatively
challenging conditions and benefit from adaptive support mechanisms. Feature importance analysis
shows that #Fail_Times contributes 48% of the total gain, #Time_For_Winning contributes 32%, and
#Button_Click_Time contributes 20%, aligning with the intuitive notion that fail count is the
strongest indicator of player struggle.

3.2. Live A/B Testing

We conducted a two-week online A/B testwith 2,416 players tracked to control and treatment groups.
In the treatment group, the adaptive system reduced frustration rate by 14.3% relative to the baseline,
which is measured by the change in average passing times between failures, while compared with
their own data prior to the deployment. Day-one retention increased from 15.2% to 21.4%, and day-
seven retention improved by 2.1 percentage points. Importantly, average #Time_For Winning
remained statistically unchanged (p > 0.05), indicating that the system did not trivialize gameplay but
instead targeted players most at risk of disengagement.

Player feedback surveys after each game revealed that 68% of respondents reported that the game felt
“fairer” and “better paced.”, of whom 56% were classified as novice players before. These results

13

suggest that adaptive difficulty can improve subjective experience in addition to measurable
engagement metrics.

4. DISCUSSION

The results confirm that integrating Al-driven player modeling into live games can meaningfully
improve engagement while preserving challenge. The slight bias toward over-classifying players as
Expert is acceptable given that the control policy includes rollback safeguards. The use of exponential
weighting over recent sessions helps mitigate noisy fluctuations from single poor performances and
provides a smoother difficulty trajectory.

A key strength of this work is its deployability: the ONNX inference engine runs efficiently on mobile
devices without significant overhead, and the control policy is intentionally conservative to prevent
perceptible oscillations.

Nevertheless, several limitations remain. The model currently treats all game levels as homogeneous,
ignoring that some levels are inherently more difficult. Future work could incorporate level-specific
normalization or train separate models per level tier. Another limitation is that the classifier relies
solely on behavioral telemetry and does not use physiological data, which might better capture latent

frustration.

5. CONCLUSION AND FUTURE WORK

This paper presented a complete Al-based dynamic difficulty adjustment pipeline using Convld
network, from data preprocessing and feature extraction to model training, deployment, and live
testing in “Gulltovia”. The approach yields high predictive accuracy and measurable improvements
in retention and player satisfaction.

Beyond its application in Gulltovia, the proposed ConvlD-based DDA framework exhibits strong
generalizability. Because the model’s inputs—fail counts, adjusted playtime, and button-click
intensity—represent abstract behavioral metrics rather than game-specific variables, the same
architecture can be retrained and applied across diverse genres such as action, puzzle, or strategy
games. This adaptability suggests that Al-driven difficulty calibration can be standardized across
titles without bespoke tuning for each game environment. As recent studies on time-series player
modeling indicate [8], such cross-domain generalization opens a pathway toward universal DDA
systems capable of autonomously learning difficulty adjustment rules from aggregated player
telemetry.

Future research will explore reinforcement learning controllers that continuously adjust difficulty in
small increments rather than discrete steps, as well as meta-learning techniques to enable cross-level
adaptation. Incorporating multimodal signals such as heart rate or galvanic skin response as more and
more smart devices are capable of detection could further improve frustration detection. Finally,
longer-term studies should examine whether adaptive systems impact monetization and social
dynamics in multiplayer contexts.

REFERENCES

[1] Csikszentmihalyi, Mihaly. Flow: The Psychology of Optimal Experience. Harper & Row, 1990.
https://archive.org/details/flowpsychologyof00csik

[2] Hunicke, Robin. “The Case for Dynamic Difficulty Adjustment in Games.” Proceedings of the 2005 ACM SIGCHI
International Conference on Advances in Computer Entertainment Technology, ACM, 2005, pp. 429-433.
doi:10.1145/1178477.1178573.

14

https://archive.org/details/flowpsychologyof00csik

(3]
(4]

[5]
(6]

(7]
(8]

Zoeller, Georg. “Game Telemetry: The Key to Balancing Your Game.” Game Developers Conference (GDC), 2010,
https://gdcvault.com/play/1012292/Game-Telemetry-The-Key-to

Wang, Zhiguang, Weizhong Yan, and Tim Oates. “Time Series Classification from Scratch with Deep Neural
Networks: A Strong Baseline.” 2017 InternationalJoint Conference on Neural Networks (IJCNN), IEEE, 2017, pp.
1578-1585. doi:10.1109/1JCNN.2017.7966039.

Srivastava, Nitish, et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting.” Journal of
Machine Learning Research, vol. 15,2014, pp. 1929-1958. http://jmir.ora/papers/vi5/srivastavalda.html

Ioffe, Sergey, and Christian Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift.” Proceedings of the 32nd International Conference on Machine Learning ICML), 2015,
https://arxiv.org/abs/1502.03167

Kingma, Diederik P., and Jimmy Ba.“Adam: A Method for Stochastic Optimization.” International Conference on
Learning Representations (ICLR), 2015, https://arxiv.org/abs/1412.6980

Mohammadi Foumani, Nasim, et al. “Deep Leaming for Time Series Classification and Extrinsic Regression: A
Survey.” ACM Computing Surveys, vol. 56, no. 2,2024, Article 28, pp. 1-43.d0i:10.1145/3624971.

15

https://gdcvault.com/play/1012292/Game-Telemetry-The-Key-to
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1412.6980

