

International Journal of Computer Science and Information Technology

ISSN: 3005-9682 (Print), ISSN: 3005-7140 (Online) | Volume 8, Number 1, Year 2026

DOI: https://doi.org/10.62051/ijcsit.v8n1.02

Journal homepage: https://wepub.org/index.php/IJCSIT/index

Content from this work may be used under the terms of CC BY-NC 4.0 licence (https://creativecommons.org/licenses/by-nc/4.0/).
Published by Warwick Evans Publishing.

WEP
Warwick

Evans

Publishing

Research on Integrating Artificial Intelligence in User Feedback

Loops for Dynamically Adjusting Video Game Difficulty

Hongyu Wu

United World College of South East Asia, East Campus, Singapore

ABSTRACT

Dynamic Difficulty Adjustment (DDA) remains one of the most promising mechanisms for optimizing
player engagement in interactive digital entertainment. This research presents an end-to-end
framework for integrating artificial intelligence into the player feedback loop to adjust game difficulty
dynamically. Current similar models of DDA are usually requiring manual setup for controlling the in-
game resources, making the capital cost high to deploy such a model. In this research, a functional
prototype is deployed and tested in “Gulltovia”, a mobile card game launched on Appstore. We
design a data pipeline that parses raw player event logs from the game, computes session-level
metrics such as fail count, adjusted playtime, and button interaction frequency, and uses these as
inputs to a hybrid classification system that combines rule-based thresholds with a machine learning
model. The trained model is exported to ONNX and executed inside the Unity engine, enabling real-
time predictions and conservative difficulty adjustments based on probability confidence.

KEYWORDS

Dynamic Difficulty Adjustment; Player Modeling; Implicit Feedback; Machine Learning; Unity
Integration

1. INTRODUCTION

Player experience is highly sensitive to difficulty calibration. If the challenge level is too low, skilled
players quickly become bored, whereas if it is too high, novice players may become frustrated and
abandon the game altogether. Game designers have long attempted to find a “sweet spot” of difficulty

that induces what Csikszentmihalyi calls the flow state [1]: a psychological zone where challenge and

skill are in balance.

Traditional approaches to balancing difficulty rely on static tuning and playtesting, which cannot
adapt to the diverse distribution of player abilities in live service games. This gap has led to increasing
interest in Dynamic Difficulty Adjustment (DDA), in which the game system measures player

performance in real time and adjusts challenge parameters to maintain engagement.

Prior research has investigated DDA through rule-based systems and reinforcement learning

controllers. For instance, Hunicke [2] formalized the idea of “drama management” in games, and
Zoeller [3] demonstrated the use of telemetry data to identify underperforming player cohorts.
However, many of these approaches are either too unfocused, resulting in perceptible difficulty

swings, or too computationally expensive to deploy in production. Our work aims to strike a balance
by using lightweight feature extraction, interpretable models, and a conservative control policy that

preserves fairness.

This research reports on the development, implementation, and evaluation of an AI-driven DDA
pipeline. The contributions of this work are threefold: (1) a reproducible data processing pipeline for

9

computing per-session skill indicators from raw event logs, (2) a 1D Convolution neural network with
calibrated probability outputs that predict player skill levels, and (3) a feedback controller that
integrates with the Unity game engine to adjust difficulty parameters in real time under strict stability

constraints.

2. METHODOLOGY

2.1. Dataset and Preprocessing

The dataset used in this research (Figure 1) comprises a CSV file with 59 columns of event types,
including #user_id (unique user id for each downloaded player), #event_name (coding name for every

interaction with the game), #event_time (the time stamp that certain event happens in GMT+0), and,

where applicable, #score or #final_score (game score).

The first step is to sort the dataset by #user_id and timestamp to reconstruct chronological player
histories. Sessions are defined as contiguous intervals between #game_start (when the game opens)
and #game_end (when the user quits the app) events, with any idle gap greater than 30 minutes treated

as a session boundary.

Figure 1. Raw Event Table

Mathematically, if 𝑡𝑠 (#game_start) and 𝑡𝑒 (#game_end) denote the time stamps of the start and end

of the session respectively, and 𝑡𝑞𝑖 (where the app quits systematically, not in sleeping), 𝑡𝑙𝑖 (game

begins systematically, not when user open the app) denote pairs of app quit and launch times during

the session, the true playtime is computed as

Where n is the number of quit to launch intervals. This adjustment ensures that background time does

not artificially inflate playtime. The examined table is below (Figure 2).

10

Figure 2. Processed Event Table

2.2. Feature Engineering

For each session, we compute three main metrics: (1) #Fail_Times, the number of failed endings

(where #ending_id is in the failure set {1,2,3}); (2) #Time_For_Winning, equal to 𝑇𝑝𝑙𝑎𝑦 when the

session ends with a win; and (3) #Button_Click_Time, #counting card_select events as a proxy for
interaction intensity. To smooth noise, especially for players with very short sessions, we apply

exponential weighting across the most recent k sessions so that more recent performance has higher

influence.

2.3. Classification Strategy

The baseline classifier uses deterministic rules: if 𝑇𝑝𝑙𝑎𝑦 is smaller than 150 seconds, and

#Button_Click_Time less than 15, the player is labeled Expert. If these thresholds are slightly
exceeded but still within defined limits (≤2 fails, ≤400 seconds, ≤30 clicks), the label is Normal. All
other cases are classified as Novice. This boundary is set by the game studio who produced this

mobile game —with us being the major programmer and designer— and as a result of the data

analysis of over 2000 players' statistics.

11

2.4. Model Training

Figure 3. Initial Model (Part)

Figure 4. Final Model (Part)

The model architecture was selected based on its ability to efficiently capture temporal dependencies

between player metrics while remaining lightweight for mobile deployment. A one-dimensional
convolutional network (Conv1D) was chosen because it is well-suited to sequential data with limited

12

feature dimensions, such as session-based gameplay telemetry. Unlike traditional multilayer
perceptrons that treat inputs as independent, the Conv1D layer can detect localized patterns in player
behavior—such as repeated fail–recover cycles—through its kernel sliding operation, allowing the

network to learn temporal correlations between fail times, completion durations, and interaction
frequencies. This design follows prior work demonstrating that compact convolutional architectures

outperform fully connected ones for low-dimensional sequential tasks [4].

The specific hyperparameters were selected to balance generalization and computational efficiency.
Hidden layers of 64 and 32 neurons provide sufficient representational capacity without inflating

inference cost. Dropout rates of 0.15 and 0.10, following Srivastava et al. (2014) [5], mitigate
overfitting by stochastically deactivating neurons during training, while Batch Normalization [5: Ioffe

& Szegedy, 2015] stabilizes gradient flow and accelerates convergence.

Rectified Linear Units (ReLU) were employed for their sparsity and efficiency on mobile processors.
The model was optimized using the Adam algorithm [7] with a learning rate of 1×10⁻³, which

provides adaptive gradient scaling and fast convergence for small datasets. Compared to a simple
MLP baseline, the Conv1D model demonstrated faster convergence and superior accuracy,

confirming that capturing local sequential dependencies is beneficial even in compact behavioral

datasets.

2.5. Integration with Unity

The trained model is exported to ONNX format for deployment inside Unity. At runtime, each
completed session triggers feature computation, which is then passed to the ONNX model through

Unity’s Barracuda inference engine. The predicted probability vector

is used to update a rolling player profile. Difficulty parameters, such as enemy health multiplier and

resource drop rate, are then adjusted if the maximum class probability exceeds a confidence threshold.
Adjustments are rate-limited to a maximum change of Δ per session and can be rolled back if

engagement metrics decline.

3. RESULTS AND DISCUSSION

3.1. Offline Evaluation

Training loss decreased from 0.64 to 0.20 within 100 epochs, converging around epoch 35, indicating
that the model quickly reached a stable minimum. The final test accuracy is 97.65%. The confusion
matrix, presented in Figure 7, shows strong diagonal dominance, with only two Normal sessions

misclassified as Expert, suggesting a slight optimism bias but no systematic underestimation of player
difficulty. Recall remains above 0.93 for all classes, confirming that the model does not under-

represent novice players.

13

Figure 5. Training Table

Figure 6. Loss Over Time Figure 7. Confusion Matrix

The distribution of predicted skill classes reveals that 62% of players fall into the Novice category,
23% into Normal, and 10% into Expert. This skew suggests that most players face relatively

challenging conditions and benefit from adaptive support mechanisms. Feature importance analysis
shows that #Fail_Times contributes 48% of the total gain, #Time_For_Winning contributes 32%, and
#Button_Click_Time contributes 20%, aligning with the intuitive notion that fail count is the

strongest indicator of player struggle.

3.2. Live A/B Testing

We conducted a two-week online A/B test with 2,416 players tracked to control and treatment groups.
In the treatment group, the adaptive system reduced frustration rate by 14.3% relative to the baseline,
which is measured by the change in average passing times between failures, while compared with

their own data prior to the deployment. Day-one retention increased from 15.2% to 21.4%, and day-
seven retention improved by 2.1 percentage points. Importantly, average #Time_For_Winning

remained statistically unchanged (p > 0.05), indicating that the system did not trivialize gameplay but

instead targeted players most at risk of disengagement.

Player feedback surveys after each game revealed that 68% of respondents reported that the game felt

“fairer” and “better paced.”, of whom 56% were classified as novice players before. These results

14

suggest that adaptive difficulty can improve subjective experience in addition to measurable

engagement metrics.

4. DISCUSSION

The results confirm that integrating AI-driven player modeling into live games can meaningfully
improve engagement while preserving challenge. The slight bias toward over-classifying players as

Expert is acceptable given that the control policy includes rollback safeguards. The use of exponential
weighting over recent sessions helps mitigate noisy fluctuations from single poor performances and

provides a smoother difficulty trajectory.

A key strength of this work is its deployability: the ONNX inference engine runs efficiently on mobile
devices without significant overhead, and the control policy is intentionally conservative to prevent

perceptible oscillations.

Nevertheless, several limitations remain. The model currently treats all game levels as homogeneous,
ignoring that some levels are inherently more difficult. Future work could incorporate level-specific

normalization or train separate models per level tier. Another limitation is that the classifier relies
solely on behavioral telemetry and does not use physiological data, which might better capture latent

frustration.

5. CONCLUSION AND FUTURE WORK

This paper presented a complete AI-based dynamic difficulty adjustment pipeline using Conv1d

network, from data preprocessing and feature extraction to model training, deployment, and live
testing in “Gulltovia”. The approach yields high predictive accuracy and measurable improvements

in retention and player satisfaction.

Beyond its application in Gulltovia, the proposed Conv1D-based DDA framework exhibits strong
generalizability. Because the model’s inputs—fail counts, adjusted playtime, and button-click

intensity—represent abstract behavioral metrics rather than game-specific variables, the same
architecture can be retrained and applied across diverse genres such as action, puzzle, or strategy

games. This adaptability suggests that AI-driven difficulty calibration can be standardized across
titles without bespoke tuning for each game environment. As recent studies on time-series player
modeling indicate [8], such cross-domain generalization opens a pathway toward universal DDA

systems capable of autonomously learning difficulty adjustment rules from aggregated player

telemetry.

Future research will explore reinforcement learning controllers that continuously adjust difficulty in
small increments rather than discrete steps, as well as meta-learning techniques to enable cross-level
adaptation. Incorporating multimodal signals such as heart rate or galvanic skin response as more and

more smart devices are capable of detection could further improve frustration detection. Finally,
longer-term studies should examine whether adaptive systems impact monetization and social

dynamics in multiplayer contexts.

REFERENCES

[1] Csikszentmihalyi, Mihaly. Flow: The Psychology of Optimal Experience. Harper & Row, 1990.

https://archive.org/details/flowpsychologyof00csik

[2] Hunicke, Robin. “The Case for Dynamic Difficulty Adjustment in Games.” Proceedings of the 2005 ACM SIGCHI

International Conference on Advances in Computer Entertainment Technology, ACM, 2005, pp. 429 –433.

doi:10.1145/1178477.1178573.

https://archive.org/details/flowpsychologyof00csik

15

[3] Zoeller, Georg. “Game Telemetry: The Key to Balancing Your Game.” Game Developers Conference (GDC), 2010,

https://gdcvault.com/play/1012292/Game-Telemetry-The-Key-to

[4] Wang, Zhiguang, Weizhong Yan, and Tim Oates. “Time Series Classification from Scratch with Deep Neural

Networks: A Strong Baseline.” 2017 International Joint Conference on Neural Networks (IJCNN), IEEE, 2017, pp.

1578–1585. doi:10.1109/IJCNN.2017.7966039.

[5] Srivastava, Nitish, et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting.” Journal of

Machine Learning Research, vol. 15, 2014, pp. 1929–1958. http://jmlr.org/papers/v15/srivastava14a.html

[6] Ioffe, Sergey, and Christian Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift.” Proceedings of the 32nd International Conference on Machine Learning (ICML), 2015,

https://arxiv.org/abs/1502.03167

[7] Kingma, Diederik P., and Jimmy Ba. “Adam: A Method for Stochastic Optimization.” International Conference on

Learning Representations (ICLR), 2015, https://arxiv.org/abs/1412.6980

[8] Mohammadi Foumani, Nasim, et al. “Deep Learning for Time Series Classification and Extrinsic Regression: A

Survey.” ACM Computing Surveys, vol. 56, no. 2, 2024, Article 28, pp. 1–43. doi:10.1145/3624971.

https://gdcvault.com/play/1012292/Game-Telemetry-The-Key-to
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1412.6980

