
   

 

International Journal of Computer Science and Information Technology 

ISSN: 3005-9682 (Print), ISSN: 3005-7140 (Online) | Volume 8, Number 1, Year 2026 

DOI: https://doi.org/10.62051/ijcsit.v8n1.02 

Journal homepage: https://wepub.org/index.php/IJCSIT/index  

 

   

 

Content from this work may be used under the terms of CC BY-NC 4.0 licence (https://creativecommons.org/licenses/by-nc/4.0/). 
Published by Warwick Evans Publishing. 

WEP
Warwick

Evans

Publishing

Research on Integrating Artificial Intelligence in User Feedback 

Loops for Dynamically Adjusting Video Game Difficulty 

Hongyu Wu 

United World College of South East Asia, East Campus, Singapore 

 

ABSTRACT  

Dynamic Difficulty Adjustment (DDA) remains one of the most promising mechanisms for optimizing 
player engagement in interactive digital entertainment. This research presents an end-to-end 
framework for integrating artificial intelligence into the player feedback loop to adjust game difficulty 
dynamically. Current similar models of DDA are usually requiring manual setup for controlling the in-
game resources, making the capital cost high to deploy such a model. In this research, a functional 
prototype is deployed and tested in “Gulltovia”, a mobile card game launched on Appstore. We 
design a data pipeline that parses raw player event logs from the game, computes session-level 
metrics such as fail count, adjusted playtime, and button interaction frequency, and uses these as 
inputs to a hybrid classification system that combines rule-based thresholds with a machine learning 
model. The trained model is exported to ONNX and executed inside the Unity engine, enabling real-
time predictions and conservative difficulty adjustments based on probability confidence. 
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1. INTRODUCTION 

Player experience is highly sensitive to difficulty calibration. If the challenge level is too low, skilled  
players quickly become bored, whereas if it is too high, novice players may become frustrated and 
abandon the game altogether. Game designers have long attempted to find a “sweet spot” of difficulty 

that induces what Csikszentmihalyi calls the flow state [1]: a psychological zone where challenge and 

skill are in balance.  

Traditional approaches to balancing difficulty rely on static tuning and playtesting, which cannot 
adapt to the diverse distribution of player abilities in live service games. This gap has led to increasing 
interest in Dynamic Difficulty Adjustment (DDA), in which the game system measures player 

performance in real time and adjusts challenge parameters to maintain engagement. 

Prior research has investigated DDA through rule-based systems and reinforcement learning 

controllers. For instance, Hunicke [2] formalized the idea of “drama management” in games, and 
Zoeller [3] demonstrated the use of telemetry data to identify underperforming player cohorts. 
However, many of these approaches are either too unfocused, resulting in perceptible difficulty 

swings, or too computationally expensive to deploy in production. Our work aims to strike a balance 
by using lightweight feature extraction, interpretable models, and a conservative control policy that 

preserves fairness. 

This research reports on the development, implementation, and evaluation of an AI-driven DDA 
pipeline. The contributions of this work are threefold: (1) a reproducible data processing pipeline for 
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computing per-session skill indicators from raw event logs, (2) a 1D Convolution neural network with 
calibrated probability outputs that predict player skill levels, and (3) a feedback controller that 
integrates with the Unity game engine to adjust difficulty parameters in real time under strict stability 

constraints. 

2. METHODOLOGY 

2.1. Dataset and Preprocessing 

The dataset used in this research (Figure 1) comprises a CSV file with 59 columns of event types, 
including #user_id (unique user id for each downloaded player), #event_name (coding name for every 

interaction with the game), #event_time (the time stamp that certain event happens in GMT+0), and, 

where applicable, #score or #final_score (game score).  

The first step is to sort the dataset by #user_id and timestamp to reconstruct chronological player 
histories. Sessions are defined as contiguous intervals between #game_start (when the game opens) 
and #game_end (when the user quits the app) events, with any idle gap greater than 30 minutes treated 

as a session boundary. 

 

Figure 1. Raw Event Table 

Mathematically, if 𝑡𝑠 (#game_start) and 𝑡𝑒 (#game_end) denote the time stamps of the start and end 

of the session respectively, and 𝑡𝑞𝑖 (where the app quits systematically, not in sleeping), 𝑡𝑙𝑖 (game 

begins systematically, not when user open the app) denote pairs of app quit and launch times during 

the session, the true playtime is computed as 

 

                        

 
Where n is the number of quit to launch intervals. This adjustment ensures that background time does 

not artificially inflate playtime. The examined table is below (Figure 2). 
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Figure 2. Processed Event Table 

2.2. Feature Engineering 

For each session, we compute three main metrics: (1) #Fail_Times, the number of failed endings 

(where #ending_id is in the failure set {1,2,3}); (2) #Time_For_Winning, equal to 𝑇𝑝𝑙𝑎𝑦 when the 

session ends with a win; and (3) #Button_Click_Time, #counting card_select events as a proxy for 
interaction intensity. To smooth noise, especially for players with very short sessions, we apply 

exponential weighting across the most recent k sessions so that more recent performance has higher 

influence.  

2.3. Classification Strategy 

The baseline classifier uses deterministic rules: if 𝑇𝑝𝑙𝑎𝑦  is smaller than 150 seconds, and 

#Button_Click_Time less than 15, the player is labeled Expert. If these thresholds are slightly 
exceeded but still within defined limits (≤2 fails, ≤400 seconds, ≤30 clicks), the label is Normal. All 
other cases are classified as Novice. This boundary is set by the game studio who produced this 

mobile game —with us being the major programmer and designer— and as a result of the data 

analysis of over 2000 players' statistics.  
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2.4. Model Training 

 

Figure 3. Initial Model (Part) 

 

 

Figure 4. Final Model (Part) 

The model architecture was selected based on its ability to efficiently capture temporal dependencies 

between player metrics while remaining lightweight for mobile deployment. A one-dimensional 
convolutional network (Conv1D) was chosen because it is well-suited to sequential data with limited 
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feature dimensions, such as session-based gameplay telemetry. Unlike traditional multilayer 
perceptrons that treat inputs as independent, the Conv1D layer can detect localized patterns in player 
behavior—such as repeated fail–recover cycles—through its kernel sliding operation, allowing the 

network to learn temporal correlations between fail times, completion durations, and interaction 
frequencies. This design follows prior work demonstrating that compact convolutional architectures 

outperform fully connected ones for low-dimensional sequential tasks [4]. 

The specific hyperparameters were selected to balance generalization and computational efficiency. 
Hidden layers of 64 and 32 neurons provide sufficient representational capacity without inflating 

inference cost. Dropout rates of 0.15 and 0.10, following Srivastava et al. (2014) [5], mitigate 
overfitting by stochastically deactivating neurons during training, while Batch Normalization [5: Ioffe 

& Szegedy, 2015] stabilizes gradient flow and accelerates convergence.  

Rectified Linear Units (ReLU) were employed for their sparsity and efficiency on mobile processors. 
The model was optimized using the Adam algorithm [7] with a learning rate of 1×10⁻³, which 

provides adaptive gradient scaling and fast convergence for small datasets. Compared to a simple 
MLP baseline, the Conv1D model demonstrated faster convergence and superior accuracy, 

confirming that capturing local sequential dependencies is beneficial even in compact behavioral 

datasets. 

2.5. Integration with Unity 

The trained model is exported to ONNX format for deployment inside Unity. At runtime, each 
completed session triggers feature computation, which is then passed to the ONNX model through 

Unity’s Barracuda inference engine. The predicted probability vector 

is used to update a rolling player profile. Difficulty parameters, such as enemy health multiplier and 

resource drop rate, are then adjusted if the maximum class probability exceeds a confidence threshold. 
Adjustments are rate-limited to a maximum change of Δ per session and can be rolled back if 

engagement metrics decline. 

3. RESULTS AND DISCUSSION 

3.1. Offline Evaluation 

Training loss decreased from 0.64 to 0.20 within 100 epochs, converging around epoch 35, indicating 
that the model quickly reached a stable minimum. The final test accuracy is 97.65%. The confusion 
matrix, presented in Figure 7, shows strong diagonal dominance, with only two Normal sessions 

misclassified as Expert, suggesting a slight optimism bias but no systematic underestimation of player 
difficulty. Recall remains above 0.93 for all classes, confirming that the model does not under-

represent novice players. 
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Figure 5. Training Table 

 

   

Figure 6. Loss Over Time              Figure 7. Confusion Matrix 

The distribution of predicted skill classes reveals that 62% of players fall into the Novice category, 
23% into Normal, and 10% into Expert. This skew suggests that most players face relatively 

challenging conditions and benefit from adaptive support mechanisms. Feature importance analysis 
shows that #Fail_Times contributes 48% of the total gain, #Time_For_Winning contributes 32%, and 
#Button_Click_Time contributes 20%, aligning with the intuitive notion that fail count is the 

strongest indicator of player struggle. 

3.2. Live A/B Testing 

We conducted a two-week online A/B test with 2,416 players tracked to control and treatment groups. 
In the treatment group, the adaptive system reduced frustration rate by 14.3% relative to the baseline, 
which is measured by the change in average passing times between failures, while compared with 

their own data prior to the deployment. Day-one retention increased from 15.2% to 21.4%, and day-
seven retention improved by 2.1 percentage points. Importantly, average #Time_For_Winning 

remained statistically unchanged (p > 0.05), indicating that the system did not trivialize gameplay but 

instead targeted players most at risk of disengagement. 

Player feedback surveys after each game revealed that 68% of respondents reported that the game felt 

“fairer” and “better paced.”, of whom 56% were classified as novice players before. These results 
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suggest that adaptive difficulty can improve subjective experience in addition to measurable 

engagement metrics. 

4. DISCUSSION 

The results confirm that integrating AI-driven player modeling into live games can meaningfully 
improve engagement while preserving challenge. The slight bias toward over-classifying players as 

Expert is acceptable given that the control policy includes rollback safeguards. The use of exponential 
weighting over recent sessions helps mitigate noisy fluctuations from single poor performances and 

provides a smoother difficulty trajectory. 

A key strength of this work is its deployability: the ONNX inference engine runs efficiently on mobile 
devices without significant overhead, and the control policy is intentionally conservative to prevent 

perceptible oscillations.  

Nevertheless, several limitations remain. The model currently treats all game levels as homogeneous, 
ignoring that some levels are inherently more difficult. Future work could incorporate level-specific 

normalization or train separate models per level tier. Another limitation is that the classifier relies 
solely on behavioral telemetry and does not use physiological data, which might better capture latent 

frustration. 

5. CONCLUSION AND FUTURE WORK 

This paper presented a complete AI-based dynamic difficulty adjustment pipeline using Conv1d 

network, from data preprocessing and feature extraction to model training, deployment, and live 
testing in “Gulltovia”. The approach yields high predictive accuracy and measurable improvements 

in retention and player satisfaction. 

Beyond its application in Gulltovia, the proposed Conv1D-based DDA framework exhibits strong 
generalizability. Because the model’s inputs—fail counts, adjusted playtime, and button-click 

intensity—represent abstract behavioral metrics rather than game-specific variables, the same 
architecture can be retrained and applied across diverse genres such as action, puzzle, or strategy 

games. This adaptability suggests that AI-driven difficulty calibration can be standardized across 
titles without bespoke tuning for each game environment. As recent studies on time-series player 
modeling indicate [8], such cross-domain generalization opens a pathway toward universal DDA 

systems capable of autonomously learning difficulty adjustment rules from aggregated player 

telemetry. 

Future research will explore reinforcement learning controllers that continuously adjust difficulty in 
small increments rather than discrete steps, as well as meta-learning techniques to enable cross-level 
adaptation. Incorporating multimodal signals such as heart rate or galvanic skin response as more and 

more smart devices are capable of detection could further improve frustration detection. Finally, 
longer-term studies should examine whether adaptive systems impact monetization and social 

dynamics in multiplayer contexts. 
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