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ABSTRACT 

As industrial systems become increasingly complex, real-time monitoring and intelligent 
management of industrial equipment have become imperative. However, the limitations in coverage 
and accuracy of single sensors make it challenging to comprehensively characterize the operational 
state of equipment, leading to reduced system reliability and increased pressures on data 
transmission and storage. To address these challenges, this study presents a novel fault diagnosis 
method based on multi-sensor fusion using a spatio-temporal attention mechanism. Initially, one-
dimensional convolutional neural networks (1D-CNN) are employed to extract features from raw 
signals, effectively capturing local characteristics and ensuring the integrity and validity of fault 
signals. Subsequently, the spatiotemporal attention mechanism adjusts the feature weights based 
on the temporal and spatial correlations of different sensors, as well as their respective importance, 
thereby capturing the spatio-temporal dependencies across multiple sensors and enhancing the 
efficacy of information fusion. Finally, the proposed method is validated through experiments on a 
nickel flash smelting furnace system. The results demonstrate that the method achieves a fault 
diagnosis accuracy exceeding 97.78%, significantly enhancing fault detection and decision-making 
performance. 

KEYWORDS 

Multi-sensor fusion; Fault diagnosis; One-dimensional convolutional neural network; Spatio-
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1. INTRODUCTION 

As modern industrial systems become increasingly complex, operational safety has become an 

intrinsic performance metric of control systems. Any potential risks or faults in industrial equipment 

can result in significant economic losses and even pose threats to human health and safety. Therefore, 

timely and accurate fault diagnosis is critical for ensuring the reliable and efficient operation of 

industrial systems. 

As the fundamental components for information acquisition, sensors enable the monitoring of the 

operational status of industrial equipment. However, previous studies have predominantly relied on 

data from single sensors for condition monitoring. This approach faces limitations in terms of 

coverage and installation location, making it challenging to capture comprehensive information from 

complex industrial systems. Single-sensor data can lead to misjudgments regarding the health status 

of industrial equipment if the sensor itself malfunctions. Moreover, environmental conditions and 
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operational variations can significantly affect the measurements collected by a single sensor, resulting 

in inaccurate fault diagnosis. To address these challenges, the focus of research has shifted toward 

fault diagnosis based on multi-sensor data fusion. By integrating multiple sensors, a broader range of 

fault information can be captured. Thus, the development and exploration of multi-sensor data fusion 

techniques for fault diagnosis are of great significance for ensuring the efficient and healthy operation 

of industrial equipment. 

Currently, fault diagnosis techniques based on multi-sensor information fusion can be broadly 

categorized into three types: data-level fusion, feature-level fusion, and decision-level fusion. Data-

level fusion integrates the raw data from multiple sensors directly, retaining more original information. 

However, this approach typically has high computational complexity and demands significant system 

resources [1]. Feature-level fusion focuses on merging the features extracted from each sensor, 

reducing data dimensionality and computational complexity while enhancing the effectiveness of 

feature representation. This method has demonstrated a favorable balance of performance in practical 

applications. In contrast, decision-level fusion synthesizes the independent diagnostic results from 

each sensor to make a comprehensive decision. While robust, this method depends on the independent 

diagnosis of each sensor, which can lead to information redundancy and reduced processing 

efficiency [2]. Additionally, decision-level fusion struggles to capture the spatio-temporal 

correlations between sensors, making it challenging to optimize fault diagnosis at a finer granularity 

[3]. As a result, research generally indicates that feature-level fusion offers greater advantages in 

multi-sensor information processing due to its ease of implementation and effective trade-off between 

diagnostic accuracy and computational burden [4]. Wang et al. [5] proposed a multi-resolution multi-

sensor fusion network model based on deep learning for motor fault diagnosis, using multi-scale 

analysis of motor vibration and stator current signals. Cui et al. [6] employed multivariate complex 

mode decomposition to decompose complex-valued signals from multiple directions and extracted 

multiple orbit features to reflect the system's condition. They constructed fusion feature images to 

achieve feature-level fusion of multi-sensor information. Liu et al. [7] proposed an improved multi-

channel graph convolutional network for rotating machinery diagnosis, constructing graph data for 

each sensor and designing a parallel graph data processing framework to realize multi-channel feature 

fusion. However, most of these methods are limited to a certain depth of features, potentially resulting 

in insufficient representation of fault information and leading to information loss in the final fusion. 

With the continuous advancement of deep learning technologies, numerous scholars have extensively 

explored the application of feature-level fusion methods based on deep learning in the fault diagnosis 

of rotating machinery. Wang et al. [8], Xie et al. [9], and Gong et al. [10] introduced CNN-based 

feature-level fusion models to enhance fault diagnosis using vibration signals. In addition to CNN-

based feature-level fusion methods, Chen et al. [11] developed a feature fusion method for bearing 

fault diagnosis, involving the use of sparse autoencoders and deep belief networks. In [12], a one-

dimensional convolutional LSTM was employed to fuse vibration signals, improving fault diagnosis 

accuracy by integrating information from multiple sensors via LSTM. Analyzing these methods 

reveals that feature-level fusion techniques based on deep learning have indeed made significant 

progress in the fault diagnosis of rotating machinery, particularly through the integration and fusion 

of multi-sensor signals using models such as convolutional neural networks (CNN). However, 

traditional deep learning models tend to focus primarily on extracting local features, often failing to 

fully capture the spatio-temporal correlations between different sensors. To address this issue, recent 

research has increasingly incorporated attention mechanisms to better capture the spatio-temporal 

dependencies among multiple sensors. In [13], an adaptive sparse attention network was proposed, 

which dynamically focuses on dispersed local fault information in real-time. This method 

demonstrated improved training efficiency and greater interpretability. In [14], the combination of 

dense convolutional blocks with a spatial attention mechanism enhanced the model’s feature 

extraction capabilities while reducing the required data volume, enabling the recognition of varying 

degrees of bearing damage. Chen et al. [15] employed multi-dimensional data fusion, attention 

mechanisms, and multi-task learning to diagnose faults in gas sensor arrays. By introducing attention 
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mechanisms, they effectively captured critical information within sensor data, improving diagnostic 

accuracy and robustness, especially in noisy environments and under varying operational conditions. 

Li et al. [16] proposed a motor fault diagnosis model based on multi-channel signal fusion and an 

efficient channel attention (ECA) mechanism, accurately identifying motor fault patterns by fusing 

data from multiple sensors and incorporating the ECA mechanism, significantly improving fault 

recognition accuracy. 

In response to this, this study proposes a fault diagnosis method that combines 1D-CNN with a spatio-

temporal attention mechanism, referred to as the Temporal-Spatial Attention One-Dimensional 

Convolutional Neural Network (TAS-1DCNN). First, the 1D-CNN is employed to extract features 

from the raw signals of the sensors, refining local characteristics within the signals to ensure the 

completeness and effectiveness of fault information. Next, by incorporating the spatio-temporal 

attention mechanism, the feature weights are adaptively adjusted based on the temporal and spatial 

correlations and importance of different sensors. This approach captures both local and global 

dependencies among sensors, allowing for a deeper exploration of the spatio-temporal information 

across multiple sensors. Ultimately, this method enables the effective fusion of multi-sensor data, 

significantly improving fault diagnosis accuracy and enhancing the robustness of the system. 

The remainder of this study is organized as follows: Section 2 presents the theoretical background on 

one-dimensional convolutional neural networks and attention mechanisms; Section 3 introduces the 

spatio-temporal attention mechanism network for multi-sensor fusion and the multi-sensor diagnostic 

model; Section 4 provides experimental validation of the proposed method; finally, conclusions are 

drawn in Section 5. 

2. THEORETICAL BACKGROUND 

2.1. 1D-CNN 

1D-CNN is a deep learning model specifically designed for processing one-dimensional time series 

data and is widely used in signal processing and fault diagnosis. The structure of 1D-CNN, as shown 

in Fig. 1, consists of convolutional layers, pooling layers, and fully connected layers. These layers 

work together to extract features and classify the input signals. It effectively captures local temporal 

features while reducing data dimensionality and computational complexity. Compared to traditional 

methods, 1D-CNN has the advantage of automatically extracting features without the need for 

complex manual feature engineering, significantly improving model accuracy and robustness. In 

multi-sensor fusion tasks, 1D-CNN also performs exceptionally well, further enhancing fault 

detection performance by processing multi-source data. 

Input layer Convolution layer Pooling layer Fully connected layer Output layer

 

Figure 1. 1D CNN structure diagram 

The convolutional layer is the fundamental building block of a 1D-CNN, responsible for extracting 

local features from the input data. The convolution operation can be expressed as follows: 
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                            (1) 

Where j  represents the elements of the j -th input feature jF  in the -th layer. layer. k , b ,  

and ( )f   represent the convolutional kernel, bias, and the nonlinear activation function of the 

convolutional layer, respectively. A commonly used activation function is ReLU, which is defined as 

follows: 

ReLU( ) max(0, )=                             (2) 

 

The pooling layer is an essential component of 1D-CNN, responsible for reducing the spatial 

dimensions of the feature maps through downsampling while preserving key information. It decreases 

complexity, alleviates the computational burden, and extracts important features from the input data. 

The pooling layer operation is defined as follows: 

1 ( )j jPooling+ =                             (3) 

 

Where 
1

j

+
 represents the elements of the j -th input feature jF  in the 1+ -th layer, and 

( )Pooling   denotes the pooling operation. The fully connected layer integrates the local features 

extracted by the convolutional and pooling layers to generate the final output, which is defined as 

follows: 

1( )g w b−= +                             (4) 

 

Where w , b , and ( )g   represent the weights, bias, and nonlinear activation function of the fully 

connected layer, respectively. 

2.2. Attention Mechanism 

The attention mechanism, originating from the fields of deep learning and artificial intelligence, 

enhances the performance of machine learning models by mimicking the human ability to focus 

attention. This mechanism assigns different weights to various parts of the input based on their 

importance, generating a weighted sum of the input information. The model then uses this weighted 

sum as input, helping it focus more effectively on critical information. Typically, these weights are 

automatically learned and adjusted by the neural network. Assuming the input data and query vector 

are denoted as ( , 1,2, , )D d n = =  and q , the attention score of id  can be defined as follows: 

1

exp ,
max ,

exp( ( , )

( ( ))
( ( ))

n

f q d
s soft S q d

f q d



 


 =

= =


                    (5) 

Where the scoring function ( )S   calculates the similarity between the query q  and the input 

element d , and the softmax function transforms these scores into a probability distribution, ensuring 

that the total sum of the weights aaa equals 1, i.e., 
1

1
n

s
=

= . The weighted sum is then computed 

using the weights s  and the corresponding input values d , as shown in the following formula: 

1

n

i

context s d 
=

=                                (6) 

Where context represents the key information that the model focuses on. 
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3. METHODOLOGY FRAMEWORK 

3.1. Temporal Attention Mechanism 

The temporal attention mechanism is a deep learning technique specifically designed for time series 

data. Its core idea is to assign different weights to different time points, enabling the model to focus 

on the moments that are most influential to the task. Traditional deep learning models often treat all 

time points equally, overlooking the potential key changes in the time series. The temporal attention 

mechanism addresses this issue by applying weighted processing to the time points, which is 

particularly effective in fault diagnosis for industrial equipment. It helps identify critical time points 

in sensor data, often revealing abnormal conditions or impending faults in the equipment. This 

significantly improves the accuracy of predictive maintenance and fault diagnosis. Furthermore, 

incorporating the temporal attention mechanism enhances the model's flexibility and accuracy in 

handling time series data. The proposed temporal attention mechanism in this study consists mainly 

of a self-attention module (Self-Attention, SA) and a weighted average module (Weighted Average, 

WA), with the specific structure illustrated in Fig. 2. 

Temporal Attention

Conv

Conv

Conv

SUM

WA Module

SA Module
 

Figure 2. Temporal Attention Mechanism Module 

The self-attention module captures global dependencies by calculating the similarity between 

elements within the input sequence. It typically employs dot-product attention, which calculates the 

similarity between the query, key, and value to generate attention weights. The structure of the self-

attention module is shown in Fig. 3. 

Q

K

V

× 

· 

Wq

Wk

Wv
Softmax(        )

 dk 

K Q
T

SA Module

 

Figure 3. Self-Attention Module 

The self-attention mechanism allows each element of the input sequence to be weighted based on the 

other elements in the sequence, enabling each element to gather information from different positions 

within the sequence. By calculating the relationships between elements in the sequence and then 

applying the softmax function, attention weights are obtained. These attention weights can be 

computed across different time steps, allowing the integration and interaction of information from all 

time steps. 

Each input sequence 1{ , , }nX x x=  in the attention mechanism consists of nnn elements, where ix  

represents the i -th element in the sequence. For each element, the query Q , key K , and value V  

are calculated separately: 
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                                 (7) 

 

In Eq. (7), qW , kW , and vW  represent the weight matrices that perform linear transformations on 

Q , K , and V , respectively. These parameter matrices are unique to each layer of the model. 

The calculation of attention weights involves performing a dot product operation between Q  and 

K , followed by division by a normalization factor, and finally applying the softmax function for 

normalization. This can be expressed as follows: 

 

Softmax( )
T

i

k

K Q

d
 =                              (8) 

 

In Eq. (8), 
kd  represents the dimensionality of K , and TK  denotes the transpose of the matrix. In 

the Softmax function, the result of the dot product is divided by ggg to scale the dot product, 

preventing the attention weights from becoming too small or too large, which improves computational 

efficiency. Finally, the weighted sum is computed by performing a weighted summation of the 

attention weights and v , resulting in the following weighted sum: 

 

( ), 1,2, ,i i jH sum V j n=  =                          (9) 

 

In Eq. (9), iH  represents the i -th element of the output sequence, jV  denotes the j -th element of 

the value sequence, and i  refers to the attention weight of the i -th element. 

Convolutional weighted averaging effectively extracts local features, smooths the data, and reduces 

noise levels, thereby clarifying patterns. The structure of the weighted averaging module is shown in 

Fig. 4. 

＋ 

Conv1
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WA  Module

 

Figure 4. Weighted Average Module 

The weighted averaging calculation process is as follows: 

 
3

1

1

3
i i

i

H Conv
=

 =                                (10) 

 

Where 
iH   represents the output of the weighted averaging, and 

iConv  refers to the result obtained 

by applying a specific convolutional kernel through the convolution operation. 

In summary, the final output feature representation of the temporal attention mechanism is given as: 
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ReLU( )i i iZ H H = +                            (11) 

 

In Eq. (11), ReLU( )  represents the Rectified Linear Unit, which performs an element-wise 

operation that sets all negative values to zero while retaining positive values. This operation facilitates 

the flow of information within the network, helps mitigate the vanishing gradient problem, and 

enhances the model's learning performance. 

3.2. Spatial Attention Mechanism 

The spatial attention mechanism is a deep learning technique that dynamically assigns weights based 

on the importance of features at different spatial positions. This helps the model focus on key areas, 

suppress noise, and improve both efficiency and accuracy. In industrial equipment fault diagnosis, 

the spatial attention mechanism captures critical spatial features, enhancing diagnostic accuracy. In 

image processing, it highlights essential regions of the image, improving recognition and 

classification performance. Additionally, the spatial attention mechanism is applied in fields such as 

natural language processing and audio processing, where it dynamically focuses on the most 

important parts of the input data, thus boosting the model's ability to handle complex data. The 

structure of the spatial attention mechanism is shown in Fig. 5. 

Spatial Attention
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Figure 5. Spatial Attention Mechanism Modul 

For the spatial attention module, the input consists of a series of node features 

1 2{ , , }, F

N ih h h h h R=  , where there are N  nodes, and each node has F -dimensional features. 

To retain sufficient expressive power, the input features need to be mapped to a higher-dimensional 

feature space. Each node i  and j  must undergo at least one linear transformation to calculate the 

corresponding attention coefficient for each node, as shown in Eq. (12): 

( , )ij i je Wh Wh=                               (12) 

Where W  is a random weight matrix, and eee represents the influence coefficient of node i  on 

node j . To simplify the calculation and facilitate comparison of the attention coefficients, the 

softmax function is applied to normalize the influence coefficients of all neighboring nodes j  for 

node i , as shown in Eq. (13). 

exp( )
Softmax( )

exp( )
i

ij

ij ij

ikk N

e
e

e




= =


                     (13) 

Where k  represents the neighboring nodes of node i . The final attention coefficient is computed 

by incorporating a non-linear function, LeakyReLU, before normalization, as shown in Eq. (14): 

exp(LeakyReLU( ( , )))
Softmax(LeakyReLU( ))

exp(LeakyReLU( ( , )))
i

i j

ij ij

i jk N

Wh Wh
e

Wh Wh







= =


         (14) 
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Incorporating a non-linear function helps the model learn more complex data representations, 

preventing information loss and enabling the model to better handle outliers and noise. This improves 

the model's robustness and enhances the gradient flow throughout the entire network, leading to better 

overall performance. 

3.3. Multi-sensor Spatio-temporal Attention Mechanism Network 

The overall fault diagnosis framework proposed in this study is depicted in Fig. 6. Initially, one-

dimensional time series data collected from various sensors are processed through a 1D-CNN, which 

extracts key features via its convolutional, batch normalization (BN), and pooling layers. These layers 

capture temporal patterns and local dependencies within the data. Subsequently, a temporal attention 

mechanism is applied to the features extracted by the 1D-CNN, enabling the model to concentrate on 

the most relevant features in the time series for fault diagnosis, thus improving the model's sensitivity 

to critical time points. Following this, a spatial attention mechanism is employed to analyze and 

highlight spatial correlations among the sensors, preserving significant features while disregarding 

less pertinent ones. The resulting feature data is then flattened and passed to the output module, where 

fault classification is performed using a Softmax function to yield diagnostic results. 

By integrating the preliminary features extracted by the 1D-CNN with the enhanced features provided 

by the temporal and spatial attention mechanisms, classification algorithms are employed to identify 

and classify different fault types in the equipment. This approach effectively addresses the complexity 

of multi-sensor data, significantly improving the accuracy and efficiency of fault diagnosis. 
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Figure 6. Fault diagnosis overall structure diagram 

To achieve efficient fault diagnosis, data is first collected from various sensors and subjected to a 

series of preprocessing operations, including data cleaning, standardization, and noise reduction, to 

ensure that the input data is standardized and free of noise. Subsequently, the preprocessed data is fed 

into a 1D-CNN for training, where critical features are extracted, and local dependencies within the 

sequences are captured. A temporal attention mechanism is then introduced to identify significant 

time points in the data, enabling the network to focus on the most relevant information for fault 

diagnosis. Additionally, a spatial attention mechanism is employed to emphasize key spatial features, 

further enhancing the network’s sensitivity to fault-related patterns and improving its discriminatory 

capabilities. After extracting features and integrating them using spatio-temporal attention 

mechanisms, the fused features are utilized to train a multi-sensor diagnostic network. The network's 

parameters are iteratively optimized to improve its performance. Following the completion of training, 

the model's accuracy and generalizability are validated using a test dataset. Finally, the diagnostic 

results are derived from the network's analysis and output. The integration of spatio-temporal 

attention mechanisms into the fault diagnosis workflow not only improves diagnostic accuracy and 

efficiency but also enhances the system's adaptability to complex and dynamically changing 
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environments. This approach offers a robust solution for intelligent fault diagnosis in modern 

industrial systems. 

4. EXPERIMENTAL VERIFICATION 

4.1. Nickel Flash Smelting System 

The method proposed in this study is applied to the fault diagnosis of the fan in a nickel smelting 

process flash furnace, with the overall structure illustrated in Fig. 7. To ensure the safe operation of 

the flash smelting system and to prevent issues such as reduced desulfurization efficiency, equipment 

damage, or safety accidents due to fan malfunctions, the system utilizes multiple sensors to monitor 

the fan’s operational status. Based on the collected data, the system adjusts the fan speed or initiates 

an emergency shutdown. Given the diverse types of mechanical equipment involved, relying solely 

on a single signal source for fault diagnosis is insufficient. The complementary use of multi-source 

signals, such as vibration, acoustic, and temperature data, can significantly enhance the accuracy of 

fault diagnosis. To validate the effectiveness of the proposed method, data from three types of sensors 

were selected for simulation testing in the diagnostic model. 
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Figure 7. Nickel flash smelting process flow diagram 

4.1.1. Experimental data.  

To ensure diversity in the experimental data, five different operating conditions were simulated, with 

corresponding signals collected using vibration, sound, and temperature sensors. The experimental 

data was obtained through random sampling from the original dataset to ensure objectivity in the 

results. For each fault type, 4,000 samples were collected for vibration, sound, and temperature, 

respectively, totaling 20,000 vibration, 20,000 sound, and 20,000 temperature signals. The data was 

split into training and test sets at a ratio of 4:1, with 75% of the samples used for training and the 

remaining 25% for testing, which was used for model learning and validation. The sampled data is 

shown in Table 1. 
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Table 1. Sample data. 

Fault Category Total Samples Training Samples Test Samples Label 

normal 4000 3000 1000 0 

bearing fault 4000 3000 1000 1 

gearbox fault 4000 3000 1000 2 

blade fault 4000 3000 1000 3 

generator fault 4000 3000 1000 4 

 

Common gear faults include wear, tooth chipping, tooth breakage, misalignment, and skew, while 

bearing faults typically involve wear, fatigue, pitting, deposits, and eccentricity. Motor faults are 

generally characterized by winding burnouts, brush wear, bearing failures, mechanical part damage, 

and unstable operation. To analyze these fault types, vibration sensors were employed to capture 

vibration signals under each fault condition. The experiment simulated both normal operation and 

five distinct fault scenarios, with a sampling frequency of 100 Hz. For each condition, 4,700 data 

points were collected, resulting in a total of 28,200 data points for each fault category. The detailed 

sampling data is presented in Table 2. 

Table 2. Sample data for each type of fault. 

Gearbox Fault Bearing Fault Generator Fault Training 

Samples 

Test 

Samples 

Label 

normal normal normal 3760 940 0 

wear wear winding burnout 3760 940 1 

shedding fatigue brush wear 3760 940 2 

tooth breakage shedding bearing failure 3760 940 3 

Eccentric wear sediment mechanical 

component damage 

3760 940 4 

skew eccentricity unstable  

motor operation 

3760 940 5 

 

4.1.2. Model Training and Parameters.  

The multi-sensor fusion model proposed in this study is based on a spatio-temporal attention 

mechanism and primarily consists of three components: 1D-CNN, temporal attention mechanism, 

and spatial attention mechanism. Each 1D-CNN comprises three scale branches, all of which consist 

of convolutional layers, batch normalization layers, and max pooling layers with identical parameter 

settings. ReLU activation functions are employed in all convolutional layers, with "same" padding 

applied. The model outputs fault classification results via a Softmax function, with five output 

neurons corresponding to the five fault types. To prevent overfitting, a dropout rate of 0.5 is used. 

Given the large volume of data, the model is trained using mini-batches, where the choice of batch 

size impacts both training efficiency and accuracy. In this study, the batch size was adjusted and a 

learning rate of 0.001 was set to optimize the training process. The model was developed using the 

TensorFlow framework with Python 3.7 and executed on a Windows 10 platform. Detailed network 

structure parameters are presented in Table 3. 
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Table 3. Detailed parameters of the network model 

Layer Layer Type Output shape Parameters BN Activation 

function 

1 Input layer (None, 200, 1) 0 N  

2 Conv1d (None, 198, 64) 256 Y ReLU 

3 Conv1d_1 (None, 97, 128) 24704 Y ReLU 

4 Conv1d_2 (None, 46, 256) 98560 Y ReLU 

5 Conv1d_3 (None, 21, 256) 196864 Y ReLU 

6 Attention1 (None, None, 32) 70496 N  

7 Attention2 (None, 3, 5) 170 N  

8 Flatten (None, 15) 0 N  

9 Dense1 (None, 128) 2048 N ReLU 

10 Dense2 (None, 64) 8256 N ReLU 

11 Out dense (None, 5) 325 N Softmax 

 

4.1.3. Evaluation metrics.  

The efficiency of the proposed method is evaluated using accuracy, precision, recall, specificity and 

F1-score. These metrics are defined by Eqs. (15)-(19), respectively. 

 

Accuracy
TP TN

TP FN TN FP

+
=

+ + +
                       (15) 

 

Precision
TP

TP FP
=

+
                            (16) 

 

Recall
TP

TP FN
=

+
                             (17) 

 

Specificity 1
FP

TN FP
= −

+
                         (18) 

 

2  Precision  Recall
F1

Precision Recall

 
=

+
                        (19) 

 

Where FN represents the number of false negatives, where the model incorrectly classifies positive 

samples as negative, and FP represents the number of false positives, where the model incorrectly 

classifies negative samples as positive. TN denotes true negatives, where the model correctly 

classifies negative samples, and TP denotes true positives, where the model correctly classifies 

positive samples. The F1-score is the harmonic mean of precision and recall. A higher F1-score 

indicates a better balance between precision and recall. 

4.2. Experimental Results and Analysis 

In a single experiment, the variation curves of accuracy and loss values are illustrated in Fig. 8 (a) 

and (b). 
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(a)                                      (b) 

Figure 8. Model accuracy and loss values 

To validate the model's capability in diagnosing different fault types, a confusion matrix was 

generated for the diagnostic results on the test set during a single experiment, as shown in Fig. 9. The 

values in the matrix represent the number and proportion of correctly predicted samples. In categories 

0, 2, 3, and 4, there were 54, 45, 42, and 52 accurate predictions, respectively, resulting in a 

recognition accuracy of 100%. In category 1, there were 44 accurate predictions, yielding a 

recognition accuracy of 97.78%. 

 

Figure 9. Confusion matrix of the model 

Based on the confusion matrix, precision, recall, specificity, and F1-score for each operating 

condition were calculated, as shown in Table 4. The model achieved average precision, recall, 

specificity, and F1-score values of 99.64%, 99.56%, 99.89%, and 99.59%, respectively, 

demonstrating exceptional overall performance and robust diagnostic capabilities for all fault types. 

In terms of precision, fault categories 1, 2, 3, and 4 reached a maximum precision of 100%, whereas 

fault type 0 exhibited the lowest precision at 98.2%, indicating a minimal occurrence of false positives. 

For recall, fault types 0, 2, 3, and 4 attained a recall of 100%, while fault type 1 recorded the lowest 

recall at 97.8%, which reflects a reduced incidence of false negatives. Regarding specificity, fault 

types 1, 2, 3, and 4 achieved 100% specificity, whereas fault type 0 had the lowest specificity at 

99.5%, highlighting the model's effectiveness in identifying negative samples. Concerning the F1-

score, fault types 1, 3, and 4 attained perfect scores of 100%, while fault types 0 and 2 had the lowest 
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F1-scores at 99.1% and 98.9%, respectively. This indicates a commendable balance between 

precision and recall for these fault types. 

Table 4. Results of classification evaluation metrics for the test set 

Category Precision Recall Specificity F1-score 

0 0.982 1.000 0.995 0.991 

1 1.000 0.978 1.000 0.989 

2 1.000 1.000 1.000 1.000 

3 1.000 1.000 1.000 1.000 

4 1.000 1.000 1.000 1.000 

Average value 0.9964 0.9956 0.9989 0.9959 

 

To enhance the understanding of the classification performance of convolutional neural networks and 

attention mechanisms at various layers in handling flash furnace fault states, the t-SNE algorithm was 

utilized to transform the model's output signals into a two-dimensional representation for 

visualization. The resulting visualization is presented in Fig. 10. The figure indicates that the features 

are effectively separated and clustered, exhibiting a robust clustering effect. This results in a clear 

distinction among the five fault states, characterized by a pronounced linear decision boundary. 

 

Figure 10. Visualization results of the model 

4.3. Comparative Analysis of Experiments 

To validate the effectiveness of the network model presented in this study, a comparative analysis 

was conducted among the following models: 1DCNN, Multi-Scale One-Dimensional Convolutional 

Neural Network (MS1DCNN), Temporal Attention One-Dimensional Convolutional Neural Network 

(TA-1DCNN), and the proposed TAS-1DCNN model. Based on the experimental design, each 

model's testing accuracy and loss values were obtained on the test set, as illustrated in Figures 11(a) 

and (b). The 1DCNN model exhibited the lowest accuracy and the highest loss value. In comparison 

to the MS1DCNN and TA-1DCNN models, the TAS-1DCNN model demonstrated varying degrees 

of improvement in accuracy and reduction in loss. The model proposed in this study achieved the 

highest diagnostic accuracy and the lowest loss value. These results indicate that the TAS-1DCNN 

model effectively enhances fault diagnosis performance. 
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(a)                                    (b) 

Figure 11. Comparison of loss and accuracy among different models 

The experimental results demonstrate that the proposed method effectively integrates the advantages 

of 1D-CNN and spatiotemporal attention mechanisms, achieving faster convergence and higher 

classification stability. This leads to superior accuracy and lower loss values in the model. Evaluation 

metrics, including accuracy, recall, precision, specificity, F1-score, and model training time, were 

used to assess each method through 10 experimental trials, with the averages taken as the final results. 

The detailed data are shown in Table 5. 

Table 5. The average results of metrics for different models 

Model Accuracy/% Precision/% Recall/% Specificity/% F1-

score/% 

Training 

time/s 

1DCNN 97.36 97.91 98.03 99.48 97.92 460.26 

MS1DCNN 98.01 98.07 98.15 99.47 98.03 545.16 

TA-1DCNN 98.48 98.96 98.94 99.74 98.94 588.78 

TAS-1DCNN 99.62 99.64 99.56 99.89 99.59 595.51 

 

Table 5 presents the comparative results between the proposed fault diagnosis method and three other 

benchmark methods. As shown in Table 5, the recognition accuracies of the 1DCNN, MS1DCNN, 

TA-1DCNN, and TAS-1DCNN models are 97.36%, 98.01%, 98.48%, and 99.62%, respectively. The 

1DCNN model exhibits a relatively low recognition accuracy and suboptimal performance, while the 

recognition accuracies of the MS1DCNN and TA-1DCNN models are slightly lower than that of the 

TAS-1DCNN model. The proposed model achieves an average accuracy improvement of 2.26%, 

1.61%, and 1.14% over different models on the test set, indicating that the TAS-1DCNN model can 

extract features more comprehensively and effectively. Although the training time increases due to 

the larger network parameters, the model demonstrates higher diagnostic accuracy, enhancing fault 

recognition efficiency. 

The experimental results indicate that the TAS-1DCNN model yields the best overall diagnostic 

performance. For the TAS-1DCNN model, the precision rates for fault states 0, 1, 2, 3, and 4 all 

exceed 95%. In contrast, the precision rates for the single-fault diagnoses of the 1DCNN, MS1DCNN, 

and TA-1DCNN models are mostly lower than those of the TAS-1DCNN model. From the analysis 

in Table 5, it can be observed that the recall and F1-scores follow the same trend. Therefore, the TAS-

1DCNN model can more effectively isolate individual faults compared to the other models. For 

different faults, there are variations in precision, recall, and F1-scores, yet the TAS-1DCNN model 

consistently achieves relatively high values across all metrics, significantly improving fault diagnosis 

accuracy. Based on the above analysis, it is evident that the TAS-1DCNN model is more suitable for 

fault diagnosis in complex industrial equipment. 
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5. SUMMARY 

This study presents a fault diagnosis approach based on the fusion of multisensor information using 

a spatio-temporal attention mechanism. Initially, raw data from multiple sensors are fed into a 1D-

CNN for feature extraction, efficiently capturing critical temporal features. Next, a temporal attention 

mechanism is applied to dynamically uncover potential correlations between hidden features and 

target features, focusing on the most relevant portions of the time series for fault diagnosis. Finally, 

a spatial attention mechanism further explores the spatial dimension of these features, adaptively 

focusing on important information while bypassing less relevant data, leading to more precise and 

efficient fault diagnosis. Experimental comparisons show that the TAS-1D-CNN method achieves 

higher diagnostic accuracy. 
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