

International Journal of Computer Science and Information Technology

ISSN: 3005-9682 (Print), ISSN: 3005-7140 (Online) | Volume 4, Number 2, Year 2024

DOI: https://doi.org/10.62051/ijcsit.v4n2.16

Journal homepage: https://wepub.org/index.php/IJCSIT/index

Content from this work may be used under the terms of CC BY-NC 4.0 licence (https://creativecommons.org/licenses/by-nc/4.0/).

Published by Warwick Evans Publishing.

WEP
Warwick

Evans

Publishing

Key-Value Cache Quantization in Large Language Models: A
Safety Benchmark

Timothy Liu

CLEMENTS HIGH SCHOOL Sugar Land, Texas 77479 USA

ABSTRACT

The misuse of large language models (LLMs) is an ongoing concern with the expansion of general
public access to LLMs. One reason for expanded access is the development of key-value (KV) cache
quantization, a technique that significantly reduces both the large computing resource requirements
and memory bottlenecks that are characteristic of LLMs. As more developers and vendors begin to
prioritize efficiency in LLM training, protective measures against the misuse of language models
become more of an afterthought. To address the expected increase of LLM misuse accompanying
KV cache quantization, this paper covers a proof-of-concept benchmark to evaluate the proficiency
of LLMs in response safety when tested against a sample of unsafe questions consisting of 13
different question categories. Response safety is a model’s ability to both clearly deny providing a
response to a given question and avoid providing any additional information that attempts to provide
an accurate answer. By testing the sample against the Meta Llama-2-7B pretrained chat model, we
determine response safety fine-tuning considerations that address performance bias among the 13
question categories. We hope this study brings attention to not only the sacrifices of accuracy but
also response safety of KV cache quantization in large language models. (Code and data are
available at https://github.com/TimochiL/llm_benchmark.) Disclaimer: This paper contains examples
of harmful language. Reader discretion is recommended.

KEYWORDS

Large language models (LLMs); Key-value (KV); Safety Benchmark

1. INTRODUCTION

In recent years, large language models (LLMs) have become widely adopted. The parameter sizes of

LLMs have been growing with each new training to permit greater model capacity in more complex

downstream tasks [1]. Accordingly, concerns regarding LLM deployment costs and misuse surfaced,

both of which have recently been and continue to be addressed through extensive research and

development [2]:

(1) Deployment costs. Concerns over the cost of processing power have been addressed through the

development and implementation of key-value cache (KV cache). LLM inferencing requires a

significant amount of processing power achieved through hardware acceleration [3]. This is especially

observed in autoregressive models, where tokens are predicted sequentially based on previous

contexts, quickly leading to strain on available resources [4]. The required computational resources

are typically reduced by combining multiple inference requests before generation, storing attentions

and reused computations in the KV cache [3].

(2) Misuse. Similarly, various instances and potential risks of LLM misuse and abuse have been

examined, notably in regard to jailbreak prompt attacks, where prompts directed to these models are

designed to bypass LLM security measures [5]. In some models, third party safeguarding techniques

108

have provided additional layers of security against inappropriate prompting, but both jailbreak and

direct prompts have proven to be difficult to combat or inadequately addressed [6].

These concerns over the exploitation and costly deployment of LLMs converge with the emergence

of KV cache quantization techniques. In LLMs, KV cache quantization serves to alleviate speed and

memory bottlenecks as context lengths increase in LLM inferencing. This is accomplished by

reducing the size of the KV cache, decreasing the total byte size of stored attentions and tensors [3].

In essence, KV cache quantization sacrifices speed to reduce memory usage and increase resource

efficiency. Reasonably, this reduction of memory usage comes at the cost of accuracy with decreased

precision.

While many works have addressed quantization techniques in the context of memory usage and

efficiency, and some have gone further to mention the importance of preserving accuracy, very few

have explored the direct impact of quantization on safety in depth [7, 8]. With jailbreak prompting

already proving to produce adverse results in currently deployed models, the protection of KV cache

quantized models is of similar importance and urgency [5]. This work is intended to cover basic

relationships between LLM response safety and different quantization precisions in a proof-of-

concept benchmark.

In light of this central issue to KV cache quantization, we benchmark degradation in LLM responses

with three quantization precisions: 2-bit quantization, 4-bit quantization, and the original float16

precision.

2. BENCHMARKING KV CACHE QUANTIZATION

To determine a sufficient method of benchmarking the KV cache quantization precisions, we first

determined a basic definition for response safety: text generated by a model in response to a prompt

that poses potential risk to others must (1) clearly state that an answer cannot be provided and (2) not

contain any information that attempts to answer the prompt.

The following benchmark was built around this central definition to evaluate a model’s security

measures at different KV cache quantization precisions: generating responses from predefined

forbidden questions and then determining if those responses meet the previously described criteria.

2.1. Question Data Collection

The question prompts used in the benchmark are adapted from a study on jailbreak prompting. We

found these prompts appropriate for simulating LLM misuse, such as generating unethical or illegal

information [5]. These sample questions were created in consideration of OpenAI’s usage policy in

order to test LLM response safety across different misuse categories [5]. The question set contains

390 questions divided equally into 13 question groups based on topic or category.

While this study does not specifically evaluate jailbreak prompts, the sample prompts are direct

questions that can be used to evaluate a model’s prompt safety.

2.2. Response Data Generation

The 390-question sample question set is divided into the 13 categories Illegal Activity, Hate Speech,

Malware, Physical Harm, Economic Harm, Fraud, Pornography, Political Lobbying, Privacy

Violation, Legal Opinion, Financial Advice, Health Consultation, and Government Decision [5]. The

question prompts are built in the format shown in Figure 1.

The question set was evaluated with three different quantization precisions: 2-bit quantization, 4-bit

quantization, and the original float16 precision. The language model’s KV cache was quantized using

109

a Half-Quadratic Quantization (HQQ) backend. For each precision, the model’s decoded response is

stored for evaluation at a later step.

Figure 1. Meta Llama 2 7B Chat half precision response to question index 8 in the Illegal Activities

category.

2.3. Response Safety Evaluation

The evaluation process is central to the previously defined guidelines of response safety. In order for

a response to pass the evaluation, it must (1) clearly state that an answer cannot be provided and (2)

not contain any information that attempts to answer the prompt. Otherwise, the response will fail the

evaluation.

Each stored response from the 2-bit quantization, 4-bit quantization, and the original float16

precisions for each question in the sample is first evaluated by code. This is accomplished by

determining if the response contains specific phrases that are commonly generated by the model to

assert that responding to the prompted question is not within the model’s usage guidelines. An

example of this response is shown in Figure 1. To ensure the accuracy and reliability of evaluation,

the 390 responses for each of the three precisions and corresponding evaluations (pass or fail) were

manually reviewed.

3. EXPERIMENTS AND RESULTS

3.1. Quantization Precisions

For the demonstration purposes of this study, only two quantization precisions, excluding the model’s

original float16 precision, were selected. Benchmarking the 2-bit and 4-bit quantization precisions

can provide insight into how KV cache quantization affects the response accuracy with different KV

cache quantization precisions [4]. Based on evaluation results, different precisions can be expected

to produce results that align with the trend in subsection 3.2.

3.2. Evaluation Results

After manual review of the 390 responses for each of the three quantization precisions (2-bit, 4-bit,

and original float16), the results are as follows:

(1) 2-bit precision. 288/390 responses passed the response safety evaluation; 102/390 responses failed

the response safety evaluation. See Figure 2.

(2) 4-bit precision. 275/390 responses passed the response safety evaluation; 115/390 responses failed

the response safety evaluation. See Figure 2.

(3) fp16 precision. 181/390 responses passed the response safety evaluation; 209/390 responses failed

the response safety evaluation. See Figure 2.

110

Figure 2. KV Cache Response Evaluation % passed

Table 3a on page 5 shows the number of responses failed by precision and category. Figure 3b on

page 5 further illustrates the performance of each precision in the response safety benchmark. As

expected, the order of strongest to weakest response safety is the original float16 precision, the 4-bit

quantization precision, and then 2-bit quantization precision. The significant drop in performance

from the 4-bit precision to the 2-bit precision and the narrow margin of performance between float16

and 4-bit precision is also expected [4]. (Any references or mention of performance in this subsection

refers to model response safety as discussed in section 2.) In other studies of LLM efficiency and

perplexity with KV cache quantization, the 4-bit quantized model performed nearly as well as the

original precision, while the 2-bit quantized model experienced a significant drop in performance [8].

However, there are some unexpected behaviors in regard to question categories (see table 1 on page

on page 6). Considering the question sample size, some category fail bias can be attributed to the lack

question variety. However, the consistency of weak performance in some categories across different

precisions is an important consideration for current safe-guarding techniques; it remains that KV

cache quantization decreased the model’s ability to reject dangerous prompts in those categories.

Whereas some categories saw no change between the fp16 and 4-bit precisions, other categories

experienced a decrease in performance from the fp16 to 4-bit precision by 1-3 questions (with the

exception of the political lobbying category, in which the 4-bit precision outperformed the original

fp16 precision by 1 question).

Category 2-bit 4-bit fp16

Illegal Activity 9 0 0

Hate Speech 5 1 1

Malware 13 2 2

Physical Harm 10 1 1

Economic Harm 19 12 10

Fraud 7 0 0

Pornography 20 15 13

Political Lobbying 26 22 23

Privacy Violation 7 1 1

Legal Opinion 26 13 10

Financial Advice 30 24 21

Health Consultation 20 16 13

Government Decision 17 8 7

(a)

111

(b)

Figure 3. Number of failed responses by precision and category.

Table 1. Percentage of failed responses out of total failed by category.

Category 2-bit 4-bit fp16

Financial Advice 14.35 20.87 20.59

Legal Opinion 12.44 11.30 9.80

Political Lobbying 12.44 19.13 22.55

Health Consultation 9.57 13.91 12.75

Pornography 9.57 13.04 12.75

Economic Harm 9.09 10.43 9.80

Government Decision 8.13 6.96 6.86

Malware 6.22 1.74 1.96

Physical Harm 4.78 0.87 0.98

Illegal Activity 4.31 — —

Privacy Violation 3.35 0.87 0.98

Fraud 3.35 — —

Hate Speech 2.39 0.87 0.98

Total % Failed 53.59 29.49 26.15

(Ex. 14.35% of the 53.59% incorrect responses were responding to Financial Advice questions)

4. CONCLUSION

Limitations and Future Work. Due to resource and time constraints, this study is limited to the

evaluation of a single model and backend with a smaller question sample size as a proof-of-concept.

This research can be expanded to different models, model families, backends, and a larger variety of

questions and question categories.

Conclusion. In this paper, we perform a systematic examination of KV cache quantization response

safety, the ability of a KV cache quantized LLM to accurately and securely deny unsafe questions.

We also analyze basic relationships between KV cache quantization precision and response safety

using collected response scores. This research contributes to the development of KV cache

112

quantization and safeguarding techniques by providing basic insight into the increased dangers of the

misuse of LLMs specifically due to the sacrifices of KV cache quantization. We hope this study can

bring attention to an insufficiency of current KV cache quantization and encourage the development,

implementation, and enforcement of safer solutions to efficiency bottlenecks and safeguarding

techniques.

APPENDIX

Hardware Limitations

Originally, benchmark development and testing began with our personal machine, which uses the

GTX 1060 hardware accelerator from NVIDIA with 16GB of memory. However, the speed, memory,

and compute capability requirements proved to exceed the capabilities of this setup, so we migrated

to Google Colab, which uses a resource-limited hosted runtime with the NVIDIA T4 hardware

accelerator.

Batch Decoding

For each KV cache quantization precision (2-bit, 4-bit, and the original FP16), each question in the

sample is passed through the Meta Llama 2 7B Chat language model[9]. Due to the limitations of

hardware and available hosting service as previously described in subsection A.1, the questions were

encoded and decoded in a batch consisting of two prompts. This means that during inferencing, two

questions were used per model loading and offloading cycle. Batch decoding is implemented in the

benchmark code simply to maximize the GPU memory capabilities.

The question set consists of 390 questions, divided into 195 batches for each of the 3 quantization

precisions, totaling to 585 batch generation cycles.

Meta Llama 2 7B Chat

The Meta Llama 2 7B Chat language model was selected for the benchmark. The model was fine-

tuned for dialogue, which was suitable for the purposes of this benchmark. The Llama 2 7B Chat

model falls under the Llama 2 family, which is a category of auto-regressive language models that

use an optimized transformer architecture [9].

In consideration of the hardware limitations described in subsection A.1, the chat pre-trained model

was selected over models of the same family with larger parameter sizes as a proof-of-concept. Llama

2 models with larger parameter sizes can be expected to produce slightly improved results [9].

In consideration of simplicity in this study and the limited number of available KV cache quantization

techniques for other models, the Meta Llama 2 7B Chat model was selected over models from

different families, such as ChatGLM, ChatGPT, and PaLM.

HQQ Backend

Testing originally began with the Quanto backend, but the available hardware accelerator on our

personal machine and hardware accelerator service did not meet the NVIDIA hardware accelerator

compute capability requirements (See CUDA compute capability table:

https://developer.nvidia.com/cuda-gpus) [10]. Consequently, we selected the Half-Quadratic

Quantization (HQQ) backend for the benchmark [10].

https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus

113

REFERENCES

[1] Wayne Xin Zhao et al. “A Survey of Large Language Models”. In: (2023). arXiv:2303.18223 [cs.CL]. url:

https://arxiv.org/abs/2303.18223.

[2] Xiao Wang et al. “Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning”. In:

(2024). arXiv: 2404.10552 [cs.CL]. url: https://arxiv.org/abs/2404.10552.

[3] Zirui Liu et al. “KIVI : Plug-and-play 2bit KV Cache Quantization with Streaming Asymmetric Quantization”. en.

In: (2023). doi: 10.13140/RG.2.2.28167.37282.url: https://rgdoi.net/10.13140/RG.2.2.28167.37282.

[4] Raushan Turganbay. Unlocking Longer Generation with Key-Value Cache Quantization. 2024. url:

https://huggingface.co/blog/kv-cache-quantization.

[5] Xinyue Shen et al. “”Do Anything Now”: Characterizing and Evaluating In-The-Wild Jailbreak Prompts on Large

Language Models”. In: (2024). arXiv: 2308.03825[cs.CR]. url: https://arxiv.org/abs/2308.03825

[6] Xiangru Tang et al. “Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science”. In: (2024).

arXiv: 2402.04247 [cs.CY]. url: https://arxiv.org/abs/2402.04247.

[7] Yefei He et al. “ZipCache: Accurate and Efficient KV Cache Quantization with Salient Token Identification”. In:

(2024). arXiv: 2405.14256 [cs.LG]. url: https://arxiv.org/abs/2405.14256.

[8] Coleman Hooper et al. “KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache

Quantization”. In: (2024). arXiv: 2401.18079 [cs.LG]. url: https: //arxiv.org/abs/2401.18079.

[9] Hugo Touvron et al. “Llama 2: Open Foundation and Fine-Tuned Chat Models”. In:(2023). arXiv: 2307.09288

[cs.CL]. url: https://arxiv.org/abs/2307.09288.

[10] Tejaswi Kashyap. Memory Optimization in LLMs: Leveraging KV Cache Quantization for Efficient Inference. 2024.

url: https://medium.com/@tejaswi_kashyap/ memory-optimization-in-llms-leveraging-kv-cache-quantization-for-

efficient-inference-94bc3df5faef.

https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2404.10552
https://arxiv.org/abs/2404.10552
https://arxiv.org/abs/2404.10552
https://doi.org/10.13140/RG.2.2.28167.37282
https://rgdoi.net/10.13140/RG.2.2.28167.37282
https://huggingface.co/blog/kv-cache-quantization
https://arxiv.org/abs/2308.03825
https://arxiv.org/abs/2308.03825
https://arxiv.org/abs/2308.03825
https://arxiv.org/abs/2402.04247
https://arxiv.org/abs/2402.04247
https://arxiv.org/abs/2402.04247
https://arxiv.org/abs/2405.14256
https://arxiv.org/abs/2405.14256
https://arxiv.org/abs/2405.14256
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://medium.com/@tejaswi_kashyap/memory-optimization-in-llms-leveraging-kv-cache-quantization-for-efficient-inference-94bc3df5faef
https://medium.com/@tejaswi_kashyap/memory-optimization-in-llms-leveraging-kv-cache-quantization-for-efficient-inference-94bc3df5faef
https://medium.com/@tejaswi_kashyap/memory-optimization-in-llms-leveraging-kv-cache-quantization-for-efficient-inference-94bc3df5faef
https://medium.com/@tejaswi_kashyap/memory-optimization-in-llms-leveraging-kv-cache-quantization-for-efficient-inference-94bc3df5faef

