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ABSTRACT 

This study addresses the challenges of Neural Machine Translation (NMT) in handling textual and 
colloquial discrepancies in Chinese dialects, using Southern Min in Fujian as a case. It highlights the 
current state of NMT technology and explores sub word representation methods (e.g., Byte Pair 
Encoding) to mitigate issues with low-frequency and dialectal words. Dynamic attention mechanisms 
are discussed for their role in recognizing context-specific differences in reading and writing. Transfer 
learning and fine-tuning of pre-trained models are introduced as optimization strategies, alongside 
adaptive learning adjustments like dynamic learning rates, to enhance model flexibility and precision 
in complex linguistic scenarios. This paper offers practical approaches and theoretical insights to 
improve NMT's performance and adaptability in managing dialectical misreadings. 
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1. INTRODUCTION 

In the realm of Natural Language Processing (NMT), the nuanced challenge of handling Colloquial 

and Literary Readings (CLR) in Chinese dialects, particularly in Southern Fujian dialect, presents 

both obstacles and opportunities. This dialect, known for its rich variations in spoken versus written 

language, exposes the limitations of NMT systems in accurately translating texts that contain these 

distinct linguistic features. 

To address this, we'll delve into the evolution of NMT, highlighting the transformative role of 

attention mechanisms in enhancing context-aware translations. We'll scrutinize the current 

shortcomings of NMT when faced with dialect-specific phenomena like CLR, exploring how recent 

advancements in multilingual translation, low-resource, and zero-resource learning might offer 

indirect solutions or inspire new approaches. Key strategies include leveraging multi-task learning 

frameworks combined with monolingual and limited bilingual data to boost model versatility. 

Adaptive learning techniques and regularization methods will be examined for their potential to guide 

models in recognizing and differentiating CLR instances. Optimizing attention mechanisms to 

precisely manage the discrepancies between textual and colloquial readings during translation will 

also be a focal point.  

Furthermore, this review will investigate tactics like data augmentation, noise injection, and hybrid 

modeling to bolster model accuracy and resilience against CLR misinterpretations in Southern Fujian 

dialect, aiming to refine NMT capabilities in navigating complex dialectal landscapes. 
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2. RELATED WORK 

2.1. A summary of the phenomenon of CLR in Southern Fujian Dialect 

The phenomenon of CLR in Southern Fujian Dialect, as a prominent language feature in Chinese 

dialects, refers to the phenomenon of different pronunciations of the same Chinese character in 

different contexts based on its formal use or oral habits. This phenomenon not only reflects the 

dynamism and historical sedimentation of language, but also deeply reflects the close connection 

between dialects, cultural inheritance, and social changes [1]. 

2.1.1. Definition and Characteristics 

CLR, in short, refers to two or more pronunciations of the same word in a specific dialect due to 

different usage situations or contexts. In Southern Fujian dialect, there is a particularly rich and 

systematic phenomenon of textual and colloquial pronunciation, involving almost all phonetic 

categories. For example, in Xiamen dialect, more than half of the syllables have textual and colloquial 

pronunciation, which is usually related to written language or traditional Chinese pronunciation, 

while colloquial pronunciation is closely related to daily oral habits. This phenomenon is not only 

reflected in the differences in pronunciation and intonation, but also often accompanied by changes 

in vocabulary color, that is, the division of labor between different pronunciations in vocabulary color 

and pragmatic environment, reflecting the selection and distribution of components in the interaction 

between language systems [2]. 

2.1.2. influence factor 

The formation and evolution of vernacular reading in Southern Fujian Chinese has been significantly 

influenced by historical, geographic, and socio-cultural factors. Historically, the differentiation of 

Chinese language led to divergences between classical and spoken language, which became 

pronounced in Southern Fujian due to the assimilation of different language systems over time. 

Geographically, Southern Fujian's strategic location as a crossroads for linguistic exchange fostered 

the borrowing and integration of language components, contributing to the complexity and diversity 

of reading and writing patterns. 

At the socio-cultural level, the education system, political changes, and economic development have 

all played roles in shaping reading practices. Classical pronunciations were systematically preserved 

during the Ming and Qing dynasties due to the imperial examination system's emphasis on classical 

Chinese. However, with the modern promotion of Mandarin and educational reforms, the use of 

literary pronunciations has declined, giving way to a growing prominence of colloquial 

pronunciations. These historical, geographic, and socio-cultural dynamics have collectively 

contributed to the rich tapestry of vernacular reading in Southern Fujian Chinese [1]. 

2.1.3. Example analysis 

Taking Xiamen dialect as an example, the phenomenon of different pronunciations between the 

written and spoken languages almost covers all sound categories in terms of phonetic distribution. 

For example, the difference between the pronunciations of Ge Yun wen and Bai reflects the 

interaction between different language levels in the historical development process. For example, the 

pronunciation of certain specific characters such as "ma" in Xiamen dialect directly reflects the 

remnants of early ancient Chinese phonetics, while the pronunciation of characters mostly 

corresponds to the phonetic system of middle ancient Chinese. This not only demonstrates the 

hierarchical nature of different pronunciations between text and vernacular in phonetics, but also 

reflects the uneven development of language systems [2]. 

In summary, the phenomenon of vernacular reading in Southern Fujian Chinese is a complex one that 

integrates historical, regional, and socio-cultural factors. It occupies an important position in 

linguistic research, not only of great significance for language change and dialect research, but also 
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poses new challenges and research directions for fields such as machine translation and natural 

language processing [1, 2]. 

2.2. The Challenge of Identifying Phenomenon of CLR in Machine Translation 

2.2.1. Dataset limitations 

The lack of fully annotated textual and colloquial reading datasets is a key factor limiting the training 

effectiveness of machine translation models. Due to the complexity of specific dialects involved in 

the phenomenon of textual and colloquial misreading, and the varying manifestations within different 

dialect regions and even within the same dialect, it is difficult to construct a comprehensive and 

accurate dataset for annotating textual and colloquial misreading. This data scarcity not only affects 

the model's ability to learn the patterns of text and vernacular reading, but also limits the model's 

ability to accurately identify and process the phenomenon of text and vernacular reading [3]. In 

practice, research on multilingual neural machine translation often relies on a large amount of parallel 

data, but there is a serious shortage of datasets for specific language phenomena such as text 

vernacular reading, which limits the model's generalization ability and translation quality [4]. 

2.2.2. Model capability 

The current neural machine translation (NMT) model, although performing well in handling high 

resource language pairs, has significant limitations in dealing with language phenomena such as text 

vernacular reading. Attention mechanism is an important component in NMT models, which can help 

the model focus on key information in the input sequence [5]. However, traditional attention 

mechanisms may not be sufficient to accurately capture contextual dependencies and semantic 

differences in cross reading, especially when cross reading involves not only phonological changes, 

but also differences in lexical color and pragmatic background. As proposed in "Neural Machine 

Translation by Jointly Learning to Align and Translate", the model needs to have the ability to 

automatically find the source language sentence parts related to the target word without explicit 

segmentation, which puts higher requirements on the recognition and processing of text misreading 

[6]. 

2.2.3. Evaluation and optimization 

Evaluating the accuracy of recognizing textual and colloquial errors in machine translation is a 

complex task that requires a combination of linguistic expertise and modern evaluation techniques. 

Traditional automatic evaluation metrics such as BLEU may not accurately reflect the subtle 

differences in text and vernacular reading processing, so more refined evaluation methods are needed, 

such as introducing manual evaluation or using more complex evaluation metrics such as TER 

(Translation Edit Rate) or chrF, to better measure the fit between translation output and source 

language text and vernacular reading differences [7]. In terms of optimization strategies, exploring 

the use of transfer learning, semi supervised learning, and unsupervised learning techniques, 

combined with monolingual data and limited bilingual corpus, can be an effective way to improve 

the model's ability to handle textual and colloquial reading errors.  

2.3. Existing Research and Technical Solutions 

2.3.1. Data augmentation 

The data augmentation strategy aims to creatively utilize existing resources, expand the diversity of 

training data, and address complex language phenomena such as text and vernacular reading. For 

example, using bilingual or multilingual parallel corpora is a common means of enhancement. Neural 

Machine Translation by Jointly Learning to Align and Translate proposes a model for joint learning 

alignment and translation, which allows the model to automatically search for source sentence parts 

related to the target word without explicit segmentation, helping the model better understand and 
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handle the phenomenon of textual misreading [6]. The utilization of monolingual corpora is also 

crucial, as in "Neural Machine Translation of Rare Words with Subword Units", which introduces 

the use of sub word units to encode rare and unknown words. This method improves the model's 

ability to handle low-frequency and unregistered words, indirectly helping to deal with vocabulary 

phenomena unique to reading comprehension [8]. 

2.3.2. Model innovation 

To adapt to the unique feature of reading different texts, researchers have designed specific model 

architectures and learning strategies. The enhanced attention mechanism is proposed in "Learning 

Phrase Representations Using RNN Encoder Decoder for Statistical Machine Translation". Through 

a recursive neural network encoder decoder framework, the model can better capture the dependency 

relationship between the source and target languages, which is particularly important in dealing with 

text misreading, as it helps the model understand the different pronunciations of the same word in 

different contexts [9]. The adaptive learning strategy is reflected in Google's Neural Machine 

Translation System. The system introduced in the article can learn complex mappings between the 

source language and the target language through large-scale neural network models, providing a 

powerful infrastructure for handling language variants such as cross reading [10]. 

2.3.3. Post editing and evaluation 

The use of post editing and automation tools is crucial for improving translation quality. Exploring 

the Limits of Transfer Learning with a Unified Text to Text Transformer emphasizes the importance 

of fine-tuning the model after training, which can be seen as a post editing strategy. By fine-tuning 

data in specific fields, the model can better adapt to specific language phenomena such as text to 

vernacular reading [11]. In terms of evaluation, A Comprehensive Survey of Multilingual Neural 

Machine Translation points out that in addition to traditional BLEU scores, it is necessary to develop 

specific evaluation indicators and tools for reading comprehension, which helps to accurately measure 

the model's performance in dealing with such complex language phenomena [5]. 

3. STRATEGIES FOR NEURAL MACHINE TRANSLATION TO HANDLE 
THE PHENOMENON OF CLR 

3.1. Dual Encoder Decoder Architecture Optimization 

3.1.1. Optimized dual encoder design 

The architecture's innovation is centered around its dual path separation mechanism, deploying 

specialized encoders for each path. One encoder is geared toward standard language (text reading), 

focusing on capturing the structural attributes of conventional grammar and vocabulary. The other is 

dedicated to colloquial or dialect variants (vernacular reading), concentrating on extracting the variant 

information of oral expression and dialect characteristics. The vector representations emitted by these 

two encoders are imbued with rich linguistic information reflective of their respective styles, setting 

the stage for subsequent integration and translation. 

3.1.2. Advanced algorithms and operational optimization 

Advanced fusion mechanisms, including dynamic weighted fusion and dual stream interaction, are 

utilized to seamlessly merge text and vernacular features, transcending simple concatenation. This 

enhancement ensures the model optimally utilizes information from both reading styles, enriching 

contextual understanding and yielding smoother, more accurate translations. An adaptive attention 

mechanism is integrated to dynamically balance the contribution of text and vernacular encoders 

during decoding. This allows the model to selectively emphasize formal or informal aspects according 

to the translation context, focusing on the most relevant source material components for precise output. 
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Training incorporates deep multitasking, expanding beyond core translation to include 

text/vernacular classification and semantic annotation. This broadens the model's stylistic awareness, 

enhances generalization, and reduces overfitting risks. Coupled with an adaptive learning rate and 

regularization, the model maintains robustness and consistently high translation quality across diverse 

text and vernacular scenarios. 

3.2. Optimization Application of Sub word Representation 

3.2.1. Efficient Sub word Unit Generation and Processing 

The optimization practice of Byte Pair Encoding (BPE) involves generating subwords through the 

iterative merging of high-frequency character pairs [6]. To refine efficiency and flexibility, an 

iterative optimization strategy is employed, such as instituting a frequency threshold to dynamically 

recalibrate the merging strategy or taking into account grammatical structure information during the 

merging process to ensure the generated subwords adhere more closely to language rules. Moreover, 

for specific domains or linguistic traits, a tailored initialization character set can be established, which 

precludes domain terms or specific characters to expedite convergence and elevate translation quality. 

3.2.2. Integration and Optimization of Advanced Sub word Representation in NMT 

Deep optimization in open vocabulary translation through subword models employs advanced 

compression and deep learning techniques to dynamically manage sub word lists, enhancing 

efficiency and accuracy in generating and translating novel or infrequent words. Meta grammar 

modeling allows adaptive sub word adjustments during translation, boosting vocabulary creation. 

Translation models' adaptability and generalization are augmented by sub word models, which 

facilitate learning of vocabulary construction, transliteration, transcription patterns, and 

morphological shifts. This is particularly beneficial for inflection-rich languages and texts with many 

proper nouns, improving translation quality and versatility through informed sub word boundary use. 

Rare word processing is intelligently refined by optimizing sub word models. Beyond basic sub word 

combinations, context-sensitive weighting and dynamic selection based on historical frequencies 

ensure translations better align with intended meanings and reduce ambiguities. 

Dynamic attention mechanisms, integrated within sub word models, enable specialized attention 

heads to discern fine distinctions between standard and vernacular readings in source texts. Multi-

head attention during decoding synthesizes these features, accurately conveying the original context 

and style, thereby enhancing translation naturalness and precision. 

3.3. Tuning of Attention Mechanism and Adaptability to the Phenomenon of CLR 

3.3.1. Fine processing of text vernacular reading data 

Collect a corpus covering a wide range of instances of textual and colloquial reading, and 

meticulously annotate the textual and colloquial reading forms in each instance to ensure that the 

model can access a rich variety of variant samples. 

Based on the phonetic and semantic features of textual and colloquial reading, the data is subdivided 

to provide multi-dimensional input information for the model, such as the hierarchical division of 

tone and intonation, as well as the distinction of lexical meaning. 
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Figure 1. Data collection and annotation process for the phenomenon of CLR 

3.3.2. Multidimensional attention mechanism design 

Build a neural network with multi head attention, each focusing on different dimensions of 

information (such as grammatical structure, semantic content, and pronunciation features) to capture 

the complexity of textual and colloquial reading. 

Based on the characteristics of textual and colloquial reading, a customized attention weight 

calculation method is designed. For example, additive attention mechanism is used to emphasize the 

matching of syntactic structures, while multiplicative attention is used to capture semantic similarity. 

Here is a matching design: 

Additive attention mechanism: used to emphasize the matching of grammatical structures. This 

mechanism allocates attention weights by calculating the similarity of the grammatical relationship 

between each word in the source sentence and the current generated word. It is suitable for capturing 

structural features of sentences, such as subject verb object relationships. 

Multiplicative attention mechanism: used to capture semantic similarity. This mechanism allocates 

attention weights by calculating the dot product of semantic vectors between each word in the source 

sentence and the current generated word, which is suitable for identifying semantic correlations. 

Assuming we have a hidden state matrix H = [h1, h2, ..., hn] for a source language sentence, where hi 

is the hidden state vector for the i-th word. On the target language side, the current hidden state of the 

generated word is st. 

Let Wa and va be two learnable parameter matrices and vectors, respectively. The additive attention 

function can be defined as: 

ei = va
Ttanh(Wa[st;hi])                                   (1) 

 

The multiplicative attention mechanism can directly calculate the dot product of st and hi, and then 

obtain attention weights through softmax normalization. The formula is as follows: 

 

ei = st
Thi                                         (2) 
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In practice, we can linearly combine the outputs of additive and multiplicative attention mechanisms, 

or use gating mechanisms to control the contributions of the two attention mechanisms. For example, 

a gating vector g can be defined to determine the mixing ratio of two mechanisms: 

 

ai = σ(g)·softmax(ei
add) + (1 - σ(g))·softmax(ei

mult)               (3) 

 

Among them, σ is the sigmoid function, and ei
add and ei

mult represent the normalized scores of additive 

and multiplicative attention mechanisms, respectively. 

3.3.3. Dynamic adaptive weight control 

Initialize weights for each attention head and implement a dynamic adjustment mechanism tied to 

training progression. This ensures the model progressively learns optimal attention allocation for text 

and vernacular reading contexts. Through online learning strategies, utilizing translation quality 

feedback (such as BLEU scores) to dynamically adjust attention parameters, the model gradually 

optimizes its processing strategy for text vernacular reading phenomenon during the training process 

[7]. 

 

Figure 2. Simulated BLEU score changes with training iterations 

3.3.4. Refined training and evaluation process 

Reinforcement training strategy: Adopting reinforcement learning methods, the model directly 

optimizes the reward signal based on the accuracy of cross reading in translation tasks, promoting the 

model to learn more effective attention allocation strategies. 

Careful monitoring and optimization: closely monitor the rationality and effectiveness of attention 

distribution during the training process, adjust the learning rate and regularization strategy in a timely 

manner based on the performance of the model on the development set, and prevent over fitting or 

under fitting. 

3.3.5. Comprehensive evaluation and continuous iteration 

By comprehensively using BLEU scores, manual reviews, and evaluation indicators specific to text 

and vernacular reading, ensure that the model can not only translate correctly but also maintain 

appropriate conversion of text and vernacular reading. Based on evaluation results, continuously fine-

tuning model parameters or introducing transfer learning strategies, using pre trained models from 

other related tasks (such as speech recognition and text inclusion) to enhance the ability to understand 

text and vernacular reading, achieving higher quality translation. 
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3.3.6. Limitations of BLEU scores in evaluation 

When paying attention to the phenomenon of textual and colloquial reading differences (CLR) in 

Minnan language, a minority language, there may be several significant differences in BLEU scores 

compared to training general language corpora: 

BLEU might inadequately represent the authenticity and cultural appropriateness of translations for 

dialects like Minnan due to its pronunciation quirks and colloquial nuances. These elements, 

involving complex shifts in phonetics, lexicon, and context, typically elude BLEU's detection. 

Universal language models often start with higher BLEU scores, leveraging vast parallel corpora that 

adhere to standardized linguistic norms. Conversely, Minnan-targeted models might need additional 

time and data to grasp cross-reading patterns, leading to lower initial BLEU scores. 

When handling homophonous readings in Minnan, BLEU scores can be more volatile. This is 

particularly evident when incorporating new datasets or refining strategies (e.g., tweaking attention 

mechanisms), as the model adjusts to diverse reading styles. 

Given these challenges, evaluating Minnan translations might necessitate integrating additional 

metrics such as Translation Error Rate (TER), chrF, and possibly human evaluations to more 

accurately gauge translation quality and proficiency in managing CLR phenomena. 

3.4. Adaptive Learning Strategy Optimization 

3.4.1. Deepening strategies for transfer learning and fine-tuning 

WoThe working principle involves leveraging transfer learning with a robust, pre-trained base model 

from extensive multilingual or Standard Chinese corpora to capture comprehensive linguistic and 

semantic details. During fine-tuning, the focus shifts to domain-specific datasets and curated 

vernacular reading examples for precise supervised learning. The aim is to enable the model to 

accurately identify and appropriately process vernacular variations, akin to Google's NMT system's 

approach of optimizing for particular language pairs and integrating specialized instruction on diverse 

reading rules. 

Algorithm update: During the fine-tuning process, a more flexible optimizer configuration is adopted, 

such as AdamW, which adds weight attenuation on top of Adam to help reduce model overfitting. In 

addition, adopting the Layer wise Adaptive Rate Scaling (LARS) strategy to adaptively adjust the 

learning rate based on the activation of each layer can further improve the learning efficiency of the 

model when dealing with delicate language differences such as text and vernacular reading. 

3.4.2. Fine tuned application of reinforcement learning 

Working principle: Incorporating reinforcement learning, the model refines translation strategies via 

environmental interaction and feedback, optimizing outputs. A reward mechanism boosts fidelity and 

fluency, guiding the model to adeptly handle textual and vernacular discrepancies through a seq2seq 

framework. 

Innovation: Blending explorative and exploitative learning, a Curiosity Driven Learning mechanism 

spurs discovery of novel reading patterns while leveraging established rules. Algorithms like 

Proximal Policy Optimization (PPO) or Asynchronous Advantage Actor Critic (A3C) enhance policy 

update stability and learning efficacy, ideal for complex decision-making in text reading scenarios. 

3.4.3. Intelligent adjustment of dynamic learning rate strategy 

For the training of reading comprehension, a more intelligent learning rate adjustment strategy, such 

as One Cycle Policy, is adopted. This strategy first rapidly increases the learning rate to accelerate 

model convergence, and then gradually decreases to make fine adjustments. In addition, the 

introduction of an adaptive learning rate scheduler, such as Cosine Annealing with Warm Restarts, 
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not only automatically adjusts the learning rate based on the training stage, but also restarts when 

learning stops, stimulating the model to jump out of local optima. 

Based on the characteristics of text vernacular reading data, design a dynamic learning rate adjustment 

function, and adaptively adjust the learning rate according to the model's performance on text 

vernacular reading instances. For example, when the model encounters difficulties in dealing with 

complex cross reading situations, it can temporarily increase the learning rate to accelerate learning; 

After familiarizing the model with common text to vernacular conversion rules, the learning rate is 

correspondingly slowed down to consolidate the learning results. 

4. CONCLUSION 

This study addresses the challenges in Neural Machine Translation (NMT) concerning textual and 

colloquial discrepancies in Chinese dialects, notably Minnan. It highlights the role of subword 

representation techniques and dynamic attention mechanisms in enhancing translation accuracy for 

low-resource dialects. Transfer learning and fine-tuning strategies with large-scale, target-language-

similar models prove effective, with comprehensive Minnan text data boosting performance. 

Standardizing Minnan script aids quality improvement, while leveraging Mandarin monolingual 

corpora for Minnan translation enhancement is a future research avenue. 

Despite advancements, unresolved issues persist: efficiently utilizing sparse parallel and abundant 

monolingual data, constructing high-quality, wide-ranging datasets for textual-colloquial 

differentiation, refining evaluation metrics, and precisely handling long-distance dependencies in 

translation contexts. These challenges underscore the need for continued innovation in NMT's 

adaptability to complex linguistic phenomena, focusing on low-resource dialects like Minnan. Future 

studies aim to tackle these obstacles, advancing NMT's capabilities in dialect translation and low-

resource language processing. 
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