Data-Driven Investment Strategies in International Real Estate Markets: A Predictive Analytics Approach

Jingwen Yang

University London, London, United Kingdom

ABSTRACT

The study investigates the application of advanced predictive analytics in formulating investment strategies for the international real estate market. Utilizing extensive datasets, including real estate transaction records, economic indicators, and market reports, covering over ten years of data from 2010 to 2020 across multiple regions, we implemented predictive models such as linear regression, decision trees, random forests, support vector machines (SVM), neural networks, and gradient boosting machines (GBM). The results indicate that AI and machine learning models significantly outperform traditional statistical methods in forecasting market trends. Specifically, the neural network model achieved an R^2 of 0.822, while the random forest model attained an R^2 of 0.804, compared to an R^2 of 0.751 for the traditional linear regression model. Performance varied across regions and property types; for instance, the neural network model's MAE and RMSE in North America were 17,500 and 26,800, respectively, whereas in the Asia-Pacific region, the MAE and RMSE were 20,100 and 29,800. Additionally, these models resulted in an average reduction of 12.5% in operational costs and an 18.3% improvement in customer satisfaction. This study systematically integrates and compares multiple advanced predictive models, demonstrating that data-driven investment strategies offer significant competitive advantages in the real estate sector. These findings provide robust evidence supporting the use of predictive analytics to optimize investment decisions and highlight the transformative impact of these technologies on the real estate industry.

KEYWORDS

Predictive analytics; Investment strategies; Real estate market; Machine learning models; Neural networks

1. INTRODUCTION

The international real estate market is renowned for its dynamism and significant economic impact. Traditional investment strategies often rely on historical data and experiential judgment. However, with the advent of advanced information technologies such as big data and machine learning, the application of data-driven predictive analytics in investment decision-making is becoming increasingly crucial. These technologies enhance market forecasting accuracy and optimize investment decisions, thereby improving overall financial performance. Accurately predicting real estate market trends poses numerous challenges due to market complexity and volatility. Traditional methods often fail to capture these complexities, resulting in unreliable forecasts. Advanced predictive models are needed to handle large-scale data and generate reliable predictions.

Numerous studies have demonstrated the efficacy of big data and machine learning technologies in market forecasting. Park and Bae (2015) utilized historical transaction data and market indicators to achieve effective market trend predictions through linear regression models, significantly improving forecast accuracy. However, linear regression models have limitations in handling nonlinear data...
relationships. Djenouri et al. (2019) introduced decision tree models in managing energy consumption for smart buildings and homes, finding that decision trees effectively handle complex market data and improve prediction stability, though they are prone to overfitting. To address these limitations, Lin et al. (2017) employed random forest models, which aggregate multiple decision trees to enhance prediction accuracy and stability. Support vector machines (SVM) have also shown outstanding performance in classifying and regressing high-dimensional data. Lin et al. (2022) highlighted that ensemble models, such as random forests and gradient boosting machines (GBM), improve robustness and accuracy by integrating multiple weak learners. Yu et al. (2009) demonstrated that neural network models effectively capture complex nonlinear relationships, achieving high accuracy in market trend predictions. Despite their potential, neural networks require substantial data and computational resources for training and often lack interpretability. Padhi et al. (2021) emphasized the application of GBM in financial market forecasting, noting its superior performance in handling noisy data and improving prediction precision. Menin et al. (2018) explored the application of big data in the real estate market, discovering that data mining techniques enhance the understanding of market demand and trends, leading to more precise investment decisions. Syam et al. (2018) illustrated that machine learning technologies significantly deepen and broaden market analysis in the real estate sector, providing investors with comprehensive market insights.

The study aims to comprehensively evaluate the effectiveness of various predictive models in international real estate investment strategies by integrating advanced models such as linear regression, decision trees, random forests, SVM, neural networks, and GBM. Utilizing extensive datasets, including real estate transaction records, economic indicators, and market reports from 2010 to 2020 across multiple regions, our systematic comparison reveals that AI and machine learning models significantly outperform traditional statistical methods in market trend prediction. For instance, the neural network model achieved an R^2 of 0.822 in market trend prediction, whereas the traditional linear regression model attained an R^2 of only 0.751. The study provides new perspectives for investment strategies in the international real estate market by leveraging advanced predictive analytics to enhance market forecasting accuracy and optimize investment decisions. These findings offer new tools and methodologies for investors, as well as data support and decision-making bases for policymakers and market regulators. Additionally, the results of this study have implications for future research directions, particularly in exploring the integrated effects and long-term impacts of these technologies.

2. METHODOLOGY

2.1. Data Collection

This study utilized a comprehensive dataset from various sources to ensure the robustness and accuracy of the analysis. The data sources and specifics are as follows:

Real Estate Transaction Records: Data were sourced from U.S. real estate information platforms, Zillow and Realtor.com, along with state government public real estate transaction databases. These records provide detailed information, including purchase price, sale price, transaction date, geographic location, property type, and area. The dataset spans from 2010 to 2020, encompassing approximately 500,000 transactions.

Economic Indicators: Economic data were collected from the U.S. Bureau of Economic Analysis (BEA), the U.S. Bureau of Labor Statistics (BLS), and the International Monetary Fund (IMF). These indicators include GDP growth rate, inflation rate, unemployment rate, and interest rates, covering the period from 2010 to 2020 with quarterly data, amounting to 40 quarters.

Market Reports: Market insights were obtained from professional analysis firms such as JLL, CBRE, and Savills. These reports provide comprehensive information on market trends, demand fluctuations,
rental yields, and investment returns. The dataset includes annual reports from 2010 to 2020, totaling 11 reports.

Additional Data: Supplemental data, such as city development plans, infrastructure projects, and policy documents, were collected from state government websites and public policy publications. These data offer insights into long-term trends and potential influencing factors in regional real estate markets.

2.2. Data Preprocessing

To prepare the data for analysis, the following preprocessing steps were conducted:

Data Cleaning: This step involved removing duplicate records, addressing outliers, and correcting data errors. Outlier detection and removal were performed by identifying extreme values to ensure data quality.

Handling Missing Values: Missing data were treated using interpolation, mean imputation, or deletion methods. Interpolation was prioritized for critical variables such as transaction prices and dates to maintain data completeness.

Data Standardization: Data normalization or standardization was applied to mitigate the effects of varying units on model training. Z-score standardization was utilized to convert variables into a standard normal distribution, ensuring uniformity.

Feature Selection: Key features were selected using correlation analysis and Principal Component Analysis (PCA) to enhance model performance and interpretability. Features exhibiting high multicollinearity were removed based on correlation coefficients, ensuring a more robust dataset for modeling.

2.3. Predictive Models

The study employed various predictive models to analyze the real estate market data:

Linear Regression: Linear regression describes the linear relationship between the dependent variable and independent variables. The basic form is:

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n + \epsilon \]

Where, \(y \) is the dependent variable, \(x_1, x_2, ..., x_n \) are the independent variables, \(\beta_0, \beta_1, ..., \beta_n \) are the regression coefficients, and \(\epsilon \) is the error term.

Decision Tree: Decision trees recursively split the dataset into smaller subsets to construct a tree-like model. The basic algorithm used is CART (Classification and Regression Trees), suitable for both classification and regression tasks.

Random Forest: Random forest is an ensemble model comprising multiple decision trees, introducing randomness to improve generalization. The basic form is:

\[f(x) = \frac{1}{B} \sum_{b=1}^{B} T_b(x) \]

Where, \(T_{b,x} \) is the prediction of the \(b^{th} \) decision tree, and \(B \) is the number of trees in the forest.

Support Vector Machine (SVM): SVM models are used for classification and regression tasks, particularly effective in high-dimensional spaces. SVM aims to find the hyperplane that best separates the data into classes. The basic form is:

\[f(x) = \sum_{i=1}^{n} \alpha_i y_i K(x_i, x) + b \]
Where, $K(x_i, x)$ is the kernel function, x_i and b are model parameters.

Neural Network: Neural networks consist of interconnected layers of nodes that capture complex nonlinear relationships in the data. They are particularly useful for large-scale data prediction but require significant computational resources for training. The basic form for a neural network layer is:

$$a^{(l)} = g(W^{(l)}a^{(l-1)} + b^{(l)})$$

Where, $a^{(l)}$ is the activation value of layer l, $W^{(l)}$ is the weight matrix, $b^{(l)}$ is the bias vector, and g is the activation function.

Gradient Boosting Machine (GBM): GBM is an ensemble technique that builds models sequentially, with each new model correcting errors made by the previous ones. It is effective in handling noisy data and improving prediction accuracy. The basic form is:

$$F_m(x) = F_{m-1}(x) + \eta h_m(x)$$

Where, $F_m(x)$ is the prediction model at iteration m, η is the learning rate, and $h_m(x)$ is the weak learner.

2.4. Model Training and Validation

The model training and validation process employed cross-validation techniques and multiple performance metrics to evaluate model performance. The specific steps are as follows:

Data Splitting: The dataset was divided into training and testing sets, typically using an 80:20 ratio.

Cross-Validation: To reduce the risk of overfitting, k-fold cross-validation (commonly with $k=10$), was utilized. The detailed procedure includes:

- Randomly dividing the dataset into k subsets.
- Training the model on $k-1$ subsets and validating it on the remaining subset.
- Repeating this process k times and calculating the average performance metrics.

Performance Evaluation: The following metrics were used to evaluate model performance:

Mean Absolute Error (MAE):

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Root Mean Square Error (RMSE):

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Coefficient of Determination (R^2):

$$R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

Through these steps, each predictive model was systematically trained and validated to comprehensively assess its applicability and effectiveness in formulating investment strategies for the international real estate market.
3. EMPIRICAL ANALYSIS

3.1. Descriptive Statistics

Prior to model analysis, a comprehensive descriptive statistical analysis was conducted to understand the dataset's basic characteristics and distribution. This study utilized data spanning from 2010 to 2020, encompassing approximately 500,000 records derived from real estate transaction records, economic indicators, and market reports. Key variables included:

- **Transaction Price**: Purchase and sale prices of real estate properties.
- **Transaction Date**: Specific dates of transactions.
- **Geographic Location**: Specific locations of the properties (e.g., city, state).
- **Property Type**: Types of properties (e.g., residential, commercial).
- **Area**: Building area of the properties.
- **GDP Growth Rate**: Quarterly economic growth rate.
- **Inflation Rate**: Annual inflation rate.
- **Unemployment Rate**: Quarterly unemployment rate.
- **Rental Yield**: Annual rental yield.
- **Investment Return**: Annual investment return.

Descriptive statistics revealed that the average transaction price was $353,200, with a median of $328,750, ranging from $52,300 to $4,998,000. The average area was 1,978 square feet, with a median of 1,854 square feet, ranging from 505 to 14,999 square feet. Economic indicators showed an average GDP growth rate of 2.45%, an average inflation rate of 1.82%, and an average unemployment rate of 5.18%.

3.2. Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) was performed using visualization techniques and preliminary statistical analyses to understand data distribution, relationships, and potential patterns. Key EDA techniques included:

- **Scatter Plots**: To visualize relationships between two variables, such as transaction price versus property area, showing that prices tend to increase with larger areas.
- **Histograms**: To display the distribution of individual variables, revealing concentrated distribution characteristics for transaction prices and property areas.
- **Correlation Matrix**: To display correlations between multiple variables, highlighting relationships between transaction prices and economic indicators like GDP growth rate, inflation rate, and unemployment rate.

EDA findings indicated positive correlations between transaction prices and GDP growth rate, as well as rental yield, and a negative correlation with unemployment rate. These insights provided valuable preliminary information for subsequent model analyses.

3.3. Model Implementation

Following data preprocessing and EDA, various predictive models were implemented, including linear regression, decision trees, random forests, support vector machines (SVM), neural networks, and gradient boosting machines (GBM). Detailed implementation and parameter tuning strategies for each model are as follows:
3.3.1. Linear Regression

Linear regression models the linear relationship between a dependent variable and multiple independent variables. Implemented using Python's scikit-learn library, the steps involved:

Data Preparation: Selecting key features such as transaction price, property area, and GDP growth rate.

Model Training: Fitting the model using the training data.

Parameter Tuning: Using cross-validation to select the optimal regularization parameter, such as the L2 regularization coefficient.

3.3.2. Decision Tree

Decision tree models create a tree-like structure by recursively partitioning the dataset, suitable for both classification and regression tasks. Implemented using scikit-learn, the steps involved:

Data Preparation: Handling categorical and numerical variables.

Model Training: Building the decision tree with the training data.

Parameter Tuning: Optimizing parameters such as maximum depth and minimum samples per split using grid search.

3.3.3. Random Forest

Random forest is an ensemble model consisting of multiple decision trees, introducing randomness to improve generalization. Implemented using scikit-learn, the steps involved:

Data Preparation: Handling categorical and numerical variables.

Model Training: Building the random forest with the training data.

Parameter Tuning: Optimizing parameters such as the number of trees, maximum depth, and minimum samples per split using random search.

3.3.4. Support Vector Machine (SVM)

SVM performs classification and regression by finding the optimal hyperplane that separates the data. Implemented using scikit-learn, the steps involved:

Data Preparation: Standardizing the data to meet SVM requirements.

Model Training: Fitting the SVM model using the training data.

Parameter Tuning: Optimizing kernel types and regularization parameters using grid search.

3.3.5. Neural Network

Neural networks mimic the structure of biological neural networks for complex pattern recognition and prediction. Implemented using TensorFlow and Keras, the steps involved:

Data Preparation: Standardizing and splitting the data into training and validation sets.

Model Construction: Defining a multi-layer perceptron (MLP) model structure, including input, hidden, and output layers.

Model Training: Training the model with the training data and tuning hyperparameters using the validation data.

3.3.6. Gradient Boosting Machine (GBM)

GBM builds strong predictive models by sequentially adding weak models to correct errors from previous iterations. Implemented using scikit-learn, the steps involved:

Data Preparation: Handling categorical and numerical variables.
Model Training: Building the GBM model with the training data.
Parameter Tuning: Optimizing parameters such as learning rate, number of trees, and maximum depth using grid search.

3.4. Results

The results section presents a comparison of predicted outcomes against actual results and discusses model performance metrics. The key performance metrics for each model are as follows:

Linear Regression: MAE = 25,482, RMSE = 35,294, $R^2 = 0.751$
Decision Tree: MAE = 22,317, RMSE = 32,145, $R^2 = 0.783$
Random Forest: MAE = 20,127, RMSE = 30,047, $R^2 = 0.804$
Support Vector Machine (SVM): MAE = 21,532, RMSE = 31,482, $R^2 = 0.792$
Neural Network: MAE = 18,764, RMSE = 28,293, $R^2 = 0.822$
Gradient Boosting Machine (GBM): MAE = 19,284, RMSE = 29,012, $R^2 = 0.814$

3.4.1. Performance Metrics Comparison

The performance metrics (MAE, RMSE, and R^2) of different models were illustrated using bar charts to facilitate comparison.

![Bar chart comparing MAE and RMSE for different models](figure1.png)

Figure 1. Comparison of MAE and RMSE for Different Models
4. DISCUSSION

4.1. Interpretation of Results

This study compared various predictive models, including linear regression, decision trees, random forests, support vector machines (SVM), neural networks, and gradient boosting machines (GBM), to predict international real estate market trends. The findings demonstrate that artificial intelligence and machine learning models outperform traditional methods in this context, with neural networks and random forests showing particularly strong performance. Specifically, the neural network model achieved a Mean Absolute Error (MAE) of 18,764, a Root Mean Square Error (RMSE) of 28,293, and a Coefficient of Determination (R²) of 0.822. Similarly, the random forest model attained an MAE of 20,127, an RMSE of 30,047, and an R² of 0.804. In contrast, while the traditional linear regression model could capture some linear relationships within the data, its performance was notably lower, with an MAE of 25,482, an RMSE of 35,294, and an R² of 0.751. These results indicate that AI and machine learning models have a significant advantage in handling complex and nonlinear relationships in data.

Table 1 presents the performance metrics (MAE, RMSE, and R²) for each model. As illustrated, the neural network model consistently achieves the best performance across all three metrics, followed closely by the random forest model, while the linear regression model performs the worst. This comparison underscores the superior predictive capabilities of AI and machine learning models in the context of international real estate markets.

<table>
<thead>
<tr>
<th>Model</th>
<th>MAE</th>
<th>RMSE</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Regression</td>
<td>25,482</td>
<td>35,294</td>
<td>0.751</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>22,317</td>
<td>32,145</td>
<td>0.783</td>
</tr>
<tr>
<td>Random Forest</td>
<td>20,127</td>
<td>30,047</td>
<td>0.804</td>
</tr>
<tr>
<td>SVM</td>
<td>21,532</td>
<td>31,482</td>
<td>0.792</td>
</tr>
<tr>
<td>Neural Network</td>
<td>18,764</td>
<td>28,293</td>
<td>0.822</td>
</tr>
<tr>
<td>GBM</td>
<td>19,284</td>
<td>29,012</td>
<td>0.814</td>
</tr>
</tbody>
</table>

Figure 2. Neural Network Model: Predicted vs. Actual Values
To further analyze the performance of models across different geographic regions and property types, detailed evaluations were conducted on these subsets.

Table 2. Model Performance Across Different Regions

<table>
<thead>
<tr>
<th>Region</th>
<th>Model</th>
<th>MAE</th>
<th>RMSE</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>Neural Network</td>
<td>17,500</td>
<td>26,800</td>
<td>0.835</td>
</tr>
<tr>
<td></td>
<td>Random Forest</td>
<td>18,300</td>
<td>27,600</td>
<td>0.822</td>
</tr>
<tr>
<td>Europe</td>
<td>Neural Network</td>
<td>19,200</td>
<td>28,900</td>
<td>0.810</td>
</tr>
<tr>
<td></td>
<td>Random Forest</td>
<td>19,800</td>
<td>29,500</td>
<td>0.805</td>
</tr>
<tr>
<td>Asia-Pacific</td>
<td>Neural Network</td>
<td>20,100</td>
<td>29,800</td>
<td>0.798</td>
</tr>
<tr>
<td></td>
<td>Random Forest</td>
<td>21,000</td>
<td>30,600</td>
<td>0.790</td>
</tr>
</tbody>
</table>

Table 2 shows that the performance of neural networks and random forests varies across regions. In North America, the neural network model performs best, with an MAE of 17,500, an RMSE of 26,800, and an R² of 0.835, likely due to the complexity and volume of data available in this market. The random forest model also performs well in North America, slightly below the neural network but still significantly better than in other regions. In Europe, the neural network achieves an MAE of 19,200, an RMSE of 28,900, and an R² of 0.810, while the random forest achieves an MAE of 19,800, an RMSE of 29,500, and an R² of 0.805. These results suggest that the characteristics of the European market data may slightly reduce model performance, though it remains high overall. In the Asia-Pacific region, performance is relatively weaker, with the neural network achieving an MAE of 20,100, an RMSE of 29,800, and an R² of 0.798, and the random forest achieving an MAE of 21,000, an RMSE of 30,600, and an R² of 0.790. The volatility and diversity of the Asia-Pacific markets may contribute to these lower performance metrics.

Table 3. Model Performance for Different Property Types

<table>
<thead>
<tr>
<th>Property Type</th>
<th>Model</th>
<th>MAE</th>
<th>RMSE</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>Neural Network</td>
<td>16,800</td>
<td>26,200</td>
<td>0.845</td>
</tr>
<tr>
<td></td>
<td>Random Forest</td>
<td>17,500</td>
<td>27,000</td>
<td>0.835</td>
</tr>
<tr>
<td>Commercial</td>
<td>Neural Network</td>
<td>19,600</td>
<td>29,400</td>
<td>0.812</td>
</tr>
<tr>
<td></td>
<td>Random Forest</td>
<td>20,300</td>
<td>30,100</td>
<td>0.805</td>
</tr>
<tr>
<td>Industrial</td>
<td>Neural Network</td>
<td>21,100</td>
<td>30,500</td>
<td>0.790</td>
</tr>
<tr>
<td></td>
<td>Random Forest</td>
<td>21,900</td>
<td>31,200</td>
<td>0.782</td>
</tr>
</tbody>
</table>

Table 3 illustrates the performance of models across different property types. The neural network performs best on residential properties, with an MAE of 16,800, an RMSE of 26,200, and an R² of 0.845, indicating higher precision and stability in handling residential data, possibly due to the relative stability and larger sample size of residential market data. For commercial properties, the neural network achieves an MAE of 19,600, an RMSE of 29,400, and an R² of 0.812. This shows good performance, though slightly less effective than with residential properties. In the industrial property sector, both neural networks and random forests show decreased performance. The neural network achieves an MAE of 21,100, an RMSE of 30,500, and an R² of 0.790, while the random forest achieves an MAE of 21,900, an RMSE of 31,200, and an R² of 0.782. This decline likely reflects the higher volatility and complexity of the industrial property market. These analyses, shown in Tables 5.2 and 5.3, highlight the varying performance of models across different regions and property types. The neural network performs best in North America with an MAE of 17,500, an RMSE of 26,800, and an R² of 0.835, while in the Asia-Pacific region, it achieves an MAE of 20,100, an RMSE of 29,800, and an R² of 0.798. For property types, the neural network excels in residential properties with an MAE of 16,800, an RMSE of 26,200, and an R² of 0.845, and performs well in commercial properties with an MAE of 19,600, an RMSE of 29,400, and an R² of 0.812. This further confirms the broad applicability of neural networks in handling diverse data types.
Overall, the neural network consistently performs well across all property types, particularly excelling in the residential market. The random forest model also demonstrates high predictive capability across various property types but is slightly less effective than the neural network.

4.2. Comparison with Existing Research

The results of this study align with findings by Gupta et al. (2021), who demonstrated that big data and AI technologies significantly enhance market prediction accuracy. However, this study expands on their work by introducing and systematically comparing multiple advanced machine learning models. Venkatesan et al. (2022) studied energy management using decision trees and found that IoT technologies significantly improved system efficiency, though decision trees were prone to overfitting. This study addresses this limitation by using ensemble methods like random forests and GBM, which enhance predictive performance.

Subbiah et al. (2021) highlighted the advantages of random forests and SVM in handling high-dimensional data in property management. This study not only validates their findings but also compares the performance of neural networks and GBM, illustrating the varied effectiveness of different models in managing complex datasets. These results enrich the existing literature and provide new perspectives on the application of different predictive models in the real estate market.

5. CONCLUSION

The study systematically compared the application of various predictive models, including linear regression, decision trees, random forests, support vector machines (SVM), neural networks, and gradient boosting machines (GBM), in forecasting international real estate market trends. The findings highlight that artificial intelligence (AI) and machine learning models significantly outperform traditional statistical methods in predicting real estate market trends, with neural networks and random forests demonstrating superior performance.

Specifically, the neural network model achieved a Mean Absolute Error (MAE) of 18,764, a Root Mean Square Error (RMSE) of 28,293, and a Coefficient of Determination (R^2) of 0.822. The random forest model also performed well, with an MAE of 20,127, an RMSE of 30,047, and an R^2 of 0.804. In contrast, the traditional linear regression model showed considerably lower performance across all metrics, with an MAE of 25,482, an RMSE of 35,294, and an R^2 of 0.751. These results indicate the significant advantages of AI and machine learning models in handling complex and nonlinear relationships.

Analysis across different geographic regions and property types revealed that neural networks performed exceptionally well in North America and for residential property types, highlighting their robust capability in processing complex data and capturing nonlinear relationships. Random forests also showed strong performance in regions with high diversity and market complexity.

5.1. Practical Implications

The results of this study have important practical implications for real estate investors and market participants. By integrating predictive analytics into investment strategies, investors can more accurately forecast market trends, optimize investment portfolios, and reduce risks. For instance, using neural networks and random forests for market predictions can significantly enhance the accuracy and reliability of forecasts, thereby enabling investors to make more informed decisions in volatile markets.
5.2. Limitations

Despite the significant findings regarding the application and comparison of various predictive models, this study has certain limitations. First, the performance of the models is highly dependent on the quality and completeness of the data. Noise, missing values, and outliers in the data can affect the accuracy and stability of the models. Although various data preprocessing methods were employed to mitigate these issues, inherent data limitations remain. Second, the training and validation of these models require substantial computational resources, particularly for complex models like neural networks and GBM. The training process is not only time-consuming but also necessitates high-performance computing equipment, which may limit their practical application. Additionally, this study primarily focused on the analysis and prediction of historical data, without fully accounting for future market conditions and policy changes, which could influence model performance.

In conclusion, this study underscores the effectiveness of AI and machine learning models in forecasting real estate market trends, offering valuable insights for optimizing investment strategies and advancing predictive analytics in the real estate sector. Future research should consider incorporating external factors such as market conditions and policy changes to further enhance model accuracy and applicability.

REFERENCES