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ABSTRACT

The Boolean Satisfiability problem (SAT) is a classical problem in computer science and artificial
intelligence, and the most widely studied NP-complete problem. It aims to determine whether there
exists an assignment of a value to a variable of a given Boolean formula that makes the formula
true. In recent years, with the continuous improvement of theoretical research and practical
application needs, the research on SAT problems has achieved remarkable results. These advances
have not only promoted the in-depth study of the SAT problem itself, but also provided strong support
for the development of computer science, artificial intelligence and other related fields. Currently, the
research of SAT problem involves several aspects, this paper mainly focuses on the three aspects
of the improvement of SAT solving algorithm, the deepening of the theoretical foundation of SAT
and the expansion of the application area to sort out the related research results, summarize the
limitations of the existing methods, and propose possible future work.
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1. INTRODUCTION

The Boolean satisfiability problem (SAT) is a classical NP-complete problem that refers to
determining whether there exists a set of variable assignments to a given Boolean expression that
makes the expression true. The Cook-Levin theorem shows that any NP problem can be reduced to a
SAT problem in polynomial time, proving the NP-completeness of the SAT problem[1]. The
generality of the NP problem and the difficulty of solving it have inspired a great deal of research on
NP-complete problems. Therefore, the study of SAT problems is not only important for understanding
computational complexity, but also has far-reaching implications for practical applications, such as
software verification, artificial intelligence, and circuit design.

At present, the research of SAT problem involves several aspects, including the deepening of the
theoretical foundation, the improvement of the solution algorithm and the expansion of the
application field. In terms of theoretical research, the theoretical foundation of SAT problems
involves several fields such as mathematical logic and complexity theory. In recent years, researchers
have conducted in-depth studies on the computational complexity and satisfiability determination of
SAT problems. For example, for the computational complexity of SAT problems, researchers have
explored the difficulty of solving them by proving NP completeness and designing more efficient
algorithms. In terms of the improvement of the solution algorithm, the researchers conducted a
systematic study on the key technologies of coding, preprocessing and solution algorithms for SAT
problems. They proposed a series of improvement strategies and new methods to further enhance the
success rate and performance of SAT problem solving by optimizing the preprocessing process and
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improving the efficiency of the solving algorithm. In terms of application area expansion, with the
continuous improvement of the solution method and the deepening of the theoretical foundation, the
application area of SAT problems is also expanding. At present, SAT problems have been applied in
many fields such as circuit design, program verification, plan scheduling, bioinformatics and so on.
For example, in circuit design, SAT problem solving methods can be used to automatically verify the
correctness of circuits; in program verification, SAT problem solving methods can be used to detect
errors and loopholes in the program; in scheduling, SAT problem solving methods can be used to
optimize task allocation and resource scheduling. In the future, with the continuous progress of
science and technology and the growing application demand, the application areas of SAT problems
will continue to expand.

In this paper we summarize the research progress of the SAT problem around three aspects:
theoretical foundations, solution algorithms and practical applications, introduce the applications of
the SAT problem in different fields, discuss the challenges faced by the SAT problem, and provide
possible future research directions.

2. CONCEPTS RELATED TO SAT QUESTIONS

The SAT problem is a classical computer science problem, usually described and modeled in the form
of Boolean logic, where the goal is to determine whether there exists a set of Boolean variable
assignments that satisfy the conditions for a given Boolean formula to be true.

Boolean Formulas: Boolean formulas are logical expressions consisting of Boolean variables, logical
operators, and parentheses that describe a set of logical relationships. In SAT problems, the
Collocation Paradigm (CNF) is often used as the standard form of Boolean formulas.

For example, P denotes the CNF formula for a SAT instance.
P = (Xl \ —1Xy \Y X4,) N (XZ \ X3) A (ﬁX3 \Y _IX4) (1)

Boolean Variables: Boolean variables are variables in logical expressions that can only take two
values True or False. There are 4 Boolean variables in P, I = {x;, x,, x5, x4}

Literal: A literal is a Boolean variable or its negative form used to form a clause. A literal is called a
positive literal if it is the variable itself, and a negative literal if it is the negative form of the variable.

Clause: The clause is the basic unit in the CNF form and represents the parsing of multiple Boolean
variables. Each clause may contain one or more literals, and each literal may be a Boolean variable
or its negation. There are 3 clauses C; = (x; V =x, V x4),C, = (x3 V x3),C3 = (mx3 V —xy) INP.

Satisfiability: a SAT problem is a problem of determining whether or not there exists an assignment
to a given Boolean formula that satisfies the condition. If there exists a set of variable assignments
such that P is true, the problem is said to be satisfiable, otherwise it is called unsatisfiable.

These basic concepts form the basis for understanding and studying SAT problems, and are important
for conducting theoretical research and solving practice of SAT problems.

3. OVERVIEW OF RESEARCH ON SAT PROBLEMS

3.1. Improvements in SAT problem solving methods

In terms of solution algorithms, complete and incomplete algorithms are the two main categories of
methods. Completeness algorithms use the ideas of exhaustion and backtracking, which theoretically
guarantee the satisfiability of a given propositional formula and give a completeness proof in case the
instance is unsolved. However, for large-scale SAT problems, deterministic algorithms may not be
applicable. In contrast, incomplete algorithms are based on the idea of local search, and although
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most stochastic search algorithms cannot determine the unsatisfiability of a SAT problem, they can
often obtain a solution faster than deterministic algorithms when dealing with satisfiable large-scale
stochastic classes of problems, due to the use of heuristic strategies to guide the search.

3.1.1. Traditional SAT Solution Methods

Completion algorithms are mainly based on the idea of backtracking search.In the late 1970s and
early 1980s, the Davis-Putnam-Logemann-Loveland (DPLL) algorithm was proposed, marking the
modern phase of SAT solving[2]. This algorithm, based on backtracking search and pruning
techniques, provides a powerful framework for solving SAT problems. As the size of SAT problem
increases, the traditional DPLL algorithm is inefficient in some cases. In order to improve the solution
efficiency, researchers have proposed many heuristic search strategies to accelerate the solution
process by improving the variable decision making, conflict analysis and clause learning, learning
clause deletion strategy and restarting strategy, respectively. Among them, the conflict-driven clause
learning (CDCL) algorithm is now the most widely used SAT solving algorithm[3]. The CDCL
algorithm drove the subsequent development where improvements were made for different parts of
the solver such as branching decision heuristics, clause learning, learning clause deletion strategies,
restarting, etc., which improved the performance of the solver, and a series of more efficient SAT
solvers were proposed, such as Chaff, MiniSat, Glucose, BerkMin, CryptoMiniSAT, PicoSAT, and
MapleLCMDist.

Incomplete algorithms usually employ heuristic strategies to guide the search process. Stochastic
Local Search (SLS) algorithms are the basis of most incomplete algorithms[4]. This class of
algorithms performs a randomized search in the space of assignments of variables by means of a
certain strategy. It first generates a set of random assignments to all the variables, and then flips the
assignments to some of the variables under the guidance of the objective function, gradually
approaching the final solution. Selman, Levesque, and Mitchell proposed the greedy local search
algorithm GSAT(5]. after randomly generating the initial truth assignments, the algorithm chooses at
each step of the search the global variant that lets the number of unsatisfiable clauses drop the most
to be flipped until the solution of the problem is found. Although the solution is fast, it is prone to
local minima and search loops. In 1994, scholars Selman et al. improved the framework of the GSAT
algorithm and proposed the WalkSAT algorithm focusing on random walks[6]. The algorithm picks
variants from unsatisfiable clauses with the goal of minimizing the number of clauses that change
from true to false. This approach of picking variants from unsatisfiable clauses greatly reduces the
computational cost of local search and introduces a perturbation strategy to efficiently solve SAT
problems with tens of thousands of variants. Most of the subsequent incomplete algorithms are
derived from these two algorithms.In 2010, Balint and Fr&nlich proposed the Sparrow algorithm,
which introduces a probability distribution function in variable selection, where each variable is
selected with a certain probability[7].Most of these solvers use relatively complex decision
heuristics.In 2011, Shao-Wei Tsai scholars proposed the Configuration Checking strategy, i.e.,
checking the neighbor information of a variable before flipping it, which was applied to the WalkSAT
framework to obtain the SWcc algorithm[8]. In 2012, Balint and Sch&ning proposed probSAT based
on simple probability distributions, which analyzes different functions for the probability
distributions and selects the next flip variable based on the performance of the solver, which provides
a significant performance improvement over the previous solvers[9].In 2016, Liu et al. utilized the
concept of key variables to assign probabilities to the flip variables in the SLS process, and introduced
the "separation non-caching” technique to improve the efficiency of the SAT solver[10].
Subsequently, YalSAT implemented multiple variants and extensions of the probSAT algorithm and
won the gold medal in the 2017 SAT competition.In 2019, in order to avoid the local search process
from stalling due to generating the same solution again, Hossen et al. introduced similarity detection
to jJump out of the stagnant state of local search in the CCAnrSim solver[11].
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3.1.2. SAT solving methods based on machine learning

Classical algorithms for determining satisfiability problems usually have a defined algorithmic flow,
amount of data to process, and form. Deep neural networks represent the target in multiple layers by
constructing a multilayer network in the hope of obtaining better feature robustness by representing
the abstract semantics of the data through multiple layers of high-level features.

Initially machine learning based SAT solving algorithms usually extracted various features of CNF
formulas manually, such as clause lengths, frequency of occurrence of variables, relationships
between clauses, etc., and then learned and predicted them using traditional machine learning
algorithms such as decision trees, support vector machines, etc[12]. Devlin et al. viewed an instance
of a SAT problem as a vector with a number of features, each representing some attribute or property
of the SAT problem, and then transformed the solution of the SAT problem into a binary classification
task on the feature vector[13].Danisovszky et al. constructed a 48-wit lexicon to improve the
classification performance of a machine learning model by selecting appropriate features[14].
Between learning better clauses and the computational overhead of reconstructing the search tree,
Liang et al. introduced a new machine learning-based restart strategy that predicts the quality of the
next learned clause based on the history of previously learned clauses[15]. However, many of these
machine learning solutions rely on well-designed features. Considering that SAT problem instances
are rich in structure, which tends to be lost by most classical feature extraction techniques, much of
the recent work has been based on neural networks to extract structural features of SAT problems.

CNNSAT: For the random 3-SAT problem, state-of-the-art solvers still do not scale well to formulas
with hundreds of variables. To solve this problem, some researchers have proposed to consider the
determination of the satisfiability problem as a classification problem and introduced the CNNSAT
framework, which is based on a convolutional neural network that encodes the clauses and variables
in the CNF formulas into vectors and constructs an m xn sparse matrix based on whether the literal
appears in the clauses or not, where m is the number of clauses and n is the number of variables,
aiming to accelerate and improve the accuracy of statistical decision making in SAT[16].

Graph-Q-SAT: Considering the solution process of the SAT problem as a reinforcement learning
problem, deep reinforcement learning algorithms are used to learn how to make variable assignments
and decisions to maximize the performance of the solver, Kurin et al. proposed a new model based
on the Graph-Q-SAT model, which employs value-based reinforcement learning and the use of
graphical neural networks as an approximation of the Q-function to construct a new branching
heuristic algorithm for SAT[17]. A framework for solving combinatorial optimization problems using
graph neural networks and reinforcement learning is applied to NP puzzles such as the Traveling
Salesman Problem and the Backpack Problem and demonstrates performance improvements over
traditional algorithms[18]. In addition, Fei et al. proposed another approach to solve the SAT problem
by modeling the symbolic reasoning problem directly as a game and using deep reinforcement
learning to leverage the decision-making capabilities of the neural network[19].

NeuroSAT: CNF formulas are represented as graph structures and then graph neural networks are
used to learn and predict the graph structures. This approach better captures structural information
and dependencies in CNF formulas.Selsam et al. used an undirected graph representation of the CNF
in the NeuroSAT model and constructed the model with two vectors, three multilayer perceptrons,
and a two-layer paradigm LSTM[20]. However, the model requires the generation of a specific type
of pair of instances to model the SAT problem, with the difference between the two instances being
only the negation of a single literal in a single clause. As a result, the training data is limited by this
requirement, and NeuroSAT cannot accurately predict satisfiability when the number of variables is
large. Later, Selsam et al. improved NeuroSAT by proposing Neurocore, which uses unsaturated core
predictions to guide the CDCL solver, and the CDCL solver with Neurocore solves 6%-11% more
instances than the original solver[21].
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NLocalSAT: 2020, NLocalSAT combines the SLS process with a solution prediction model that
optimizes an SLS-based SAT solver by changing initialization assignments via a neural network.
Specifically, NLocalSAT uses a solution prediction model that outputs a probability distribution for
the next variable assignment by inputting the current set of conflicting clauses and variable
assignments[22]. This probability distribution is used to guide the initialization of the LS algorithm.
During the solution process, NLocalSAT continuously uses the neural network model to adjust the
initial assignments of the variables in the expectation of finding the solution faster. By combining the
LS process with the solution prediction model, NLocalSAT is able to converge to the solution faster
in most cases, thus improving the performance of the SAT solver.

GAT-SAT: GAT-SAT is a SAT solver based on Graph Attention Network (GAT). The method
utilizes graph neural networks to represent CNF formulas and solves SAT problems by learning the
relationships between the variables in the formulas[23].The core idea of GAT-SAT is to represent the
CNF formulas as a graph, where the variables and clauses are represented as the nodes and edges in
the graph, and then utilize the graph attention network to learn the interactions between the nodes, so
as to predict the values of the variables. Compared with traditional SAT solving methods, GAT-SAT
is able to better capture the dependencies between variables and has higher solving efficiency and
generalization ability. The method performs well in dealing with large-scale and complex SAT
problems and brings new ideas and methods to the field of SAT solving.

Shi et al. made the first attempt to solve the MaxSAT problem using Transformer. They represented
a given SAT instance as a two-part graph and used Transformer to aggregate messages at these
nodes.SATformer applies GNN to obtain clause feature representation in CNF[24]. A hierarchical
Transformer architecture is applied to the clause feature representation to capture the relationship
between clauses, give higher weight to the clause feature representation in the Minimum Unsatisfied
Core (MUC), and learn the correlation between clauses efficiently. Based on Transformer, HGT
defines a meta-path based word self-attention mechanism and a two-part graph link based word-
subclause cross-attention mechanism for solving the CSP problem[25].

3.2. Deepening of the theoretical foundations of the SAT problem

The theoretical basis of SAT problems involves a variety of fields such as mathematical logic and
complexity theory. In recent years, researchers have conducted in-depth studies on the computational
complexity and satisfiability determination of SAT problems. For example, for the computational
complexity of SAT problems, researchers have explored the difficulty of solving them by proving NP
completeness and designing more efficient algorithms. Meanwhile, important progress has also been
made in the research on satisfiability determination, including proposing new determination methods
and improving the efficiency of the determination process. The results of these theoretical researches
not only provide a more solid theoretical foundation for the solution of SAT problems, but also
provide a reference for the researches in other related fields.

Complexity theory: The SAT problem is shown to be NP-complete, i.e., a solution can be verified to
be correct in nondeterministic polynomial time. This result suggests that if the SAT problem can be
solved in polynomial time, then all problems in the NP class can be solved in polynomial time.
Therefore, the study of SAT problems is important for understanding NP-completeness and
computational complexity theory[26].

Difficulty analysis: Difficulty analysis of SAT problems is one of the most important aspects of SAT
theoretical research. Researchers are concerned with determining the difficult nature of SAT
problems, such as Phase Transition Phenomena, Threshold Phenomena, etc., and the average
complexity of SAT problems. These analyses contribute to a deeper understanding of the nature and
difficulty of solving SAT problems[27].

Fixed-parameter complexity: Fixed-parameter complexity theory is an approach to study the
complexity of a problem under specified parameters. The study of fixed-parameter complexity of SAT
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problems focuses on exploring the solvability of SAT problems under different parameters, such as
the number of variables, the length of clauses, and other parameters, so as to reveal the structural
characteristics and the difficulty of solving SAT problems[28].

Model Checking and Verification: SAT problems have a wide range of applications in formal
methods and software engineering, such as model checking and program verification, etc. The
theoretical study of SAT problems involves the improvement and optimization of algorithms for
model checking and verification, as well as the application and diffusion of SAT solving techniques
in practical engineering[29, 30].

Randomization algorithm: Randomization algorithms are one of the most important methods for
solving SAT problems. Theoretical research focuses on the analysis and design of efficient
stochasticity algorithms, such as randomized local search and random walk algorithms, as well as the
performance analysis and theoretical guarantees of these algorithms.

Structural analysis: Structural analysis of SAT problems is the study of structural features of CNF
formulas, with the aim of discovering and exploiting particular structures in CNF formulas to improve
solution efficiency. This includes the study of aspects such as clauses, variables, and dependencies
between clauses in SAT problems, as well as algorithm design and complexity analysis of these
structural features.

Automated reasoning and proof: Automated reasoning and proofing of SAT problems is another
important direction of research in SAT theory. This includes research on proof systems, automated
reasoning algorithms, and proof search techniques for SAT problems, as well as applications and
extensions of these techniques to areas such as logical reasoning, formal verification, and artificial
intelligence.

Theoretical studies of SAT problems cover a wide range of aspects, from complexity theory to
stochasticity algorithms, as well as in-depth analyses of problem structure and solution methods,
which provide an important theoretical foundation for understanding the nature of SAT problems,
improving their efficiency, and applying them to real-world problems

3.3. Expansion of the field of application of SAT problems

The solution methods of SAT problems have a wide range of applications in several fields. With the
continuous improvement of the solution methods and the deepening of the theoretical foundation, the
application areas of SAT problems are also expanding.

In electronic design automation (EDA), by transforming a circuit design problem into a SAT problem,
a SAT solver can be used to quickly find a solution that satisfies the design constraints.SAT problems
can be used for logic optimization and synthesis in logic synthesis to help design more efficient and
compact circuits. In the wiring phase of circuit design, SAT problems can be used to solve wiring
planning and wiring optimization problems to minimize signal delays, power consumption, etc. SAT
problems can be used to automatically generate test patterns to help detect faults and errors in
circuits.SAT problems can be used in troubleshooting and fault-tolerant design to help detect and
repair errors and faults in circuits. Overall, the application of SAT problems in EDA covers all stages
of circuit design and can increase design efficiency, reduce design costs, and improve circuit
performance and reliability[31, 32].

In the field of software engineering, SAT problems play an important role in software testing, model
checking, program analysis, etc. SAT problems can be used to automatically generate test cases to
help testers find errors and defects in the software.SAT problems can be used in program analysis
and verification, including model checking, static analysis of code, etc., to ensure the correctness and
safety of the software. In software optimization and synthesis, SAT problems can be used to solve
problems such as logic optimization and code synthesis to improve software execution efficiency and
resource utilization. In software-hardware co-design, SAT problems can be used to solve problems
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such as software-hardware interface matching and communication protocol verification to ensure the
correctness and consistency of software-hardware systems[33].

In the field of Artificial Intelligence. the SAT problems are used to solve Boolean logical reasoning
problems such as logical inference, logical inference, propositional logic, etc. These problems are
very important in the process of knowledge representation and reasoning in artificial intelligence.
Automated planning is an important area in artificial intelligence that involves finding an optimal
solution given constraints.SAT problems can be used in automated planning to help solve a variety
of planning and scheduling problems.SAT problems can also be used as the basis of logic
programming languages for implementing a variety of intelligent systems and expert systems. By
formulating problems as logical formulas and solving these formulas using SAT solvers, a variety of
logical reasoning and inference tasks can be implemented.In the field of bioinformatics, SAT
problems are used in bioinformatics for genome sequence comparison, protein folding prediction,
and molecular structure design. By modeling a biological problem as a SAT problem, a solution can
be obtained quickly using a SAT solver[34, 35].

In the field of network security, SAT problems are used for tasks such as cryptanalysis, access control
policy verification, intrusion detection, etc. For example, it is used for password cracking, analyzing
the security of network protocols, detecting anomalous behaviors in networks, etc. SAT problems are
used in automated planning to generate constraint-compliant action sequences. For example, it is used
for path planning of intelligent bodies, motion control of robots, scheduling of production lines,
etc[36].

Besides, SAT problems have a wide range of applications in combinatorial optimization, such as the
traveler's problem, the knapsack problem, and the graph coloring problem. By transforming
combinatorial optimization problems into SAT problems, SAT solvers can be used to find optimal or
near-optimal solutions[37].

The application areas of SAT problems continue to expand and deepen, and with the development of
technology and the increase in the complexity of the problems, SAT solving techniques will continue
to play an important role and bring new applications and breakthroughs in more fields.

4. SUMMARY

In recent years, researchers have proposed numerous new solution methods for SAT problems,
including backtracking-based search algorithms, machine learning-based solvers, parallel and
distributed solving techniques. These methods have made significant progress in terms of solving
efficiency, scalability and generalization. Among them, backtracking-based search algorithms find
explanations that satisfy Boolean formulas by constructing search trees. These algorithms combine
the ideas of local search and global optimization to find a solution or prove the absence of a solution
in a shorter time. Machine learning-based solvers, on the other hand, utilize machine learning
techniques to improve the performance of the solver by training models to predict the decisions during
the search process, thus improving the solution efficiency. In addition, parallel and distributed solving
techniques have become an important direction in the study of SAT problems as computational
resources continue to improve. These techniques achieve parallel processing of SAT problems by
utilizing computational resources such as multi-core processors and cloud computing, thus further
improving the solving efficiency. Deep learning methods have also been widely used in the field of
SAT solving. Researchers have proposed some neural network-based SAT solvers that utilize deep
learning techniques to improve the performance and robustness of the solvers. In addition to the
traditional SAT solving problems, researchers have also applied SAT problems to a wider range of
fields, such as bioinformatics, cybersecurity, and artificial intelligence. These new application areas
provide new challenges and opportunities for the research of SAT problems.
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Although the SAT solver has made great progress, there are still some difficulties and challenges,
such as dealing with large-scale problems and improving the robustness of the solver. Therefore,
further improvement of the solving algorithms is still an important research direction. The application
of deep learning methods in the field of SAT solving is still in its infancy, and the combination of
deep learning and traditional SAT solving techniques can be further explored in the future to improve
the performance and efficiency of the solver. With the application of SAT problems in more fields,
the potential of SAT problems in bioinformatics, cybersecurity, artificial intelligence and other fields
can be further explored in the future, and corresponding solving methods and tools can be developed.

In conclusion, the SAT problem, as a classical combinatorial optimization problem, still has a broad
research prospect and application prospect in the future. Through continuous research and innovation,
we are expected to further improve the performance and application scope of the SAT solver and
provide more effective tools and methods for solving practical problems.
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